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Abstract— For safe and effective collaboration between a
robot and a human group, the challenge arises in teaching a
diverse group of individuals about the robot’s decision-making
process in a potentially time-sensitive and resource-limited
environment. We explore the use of robot demonstrations
as a means of effectively teaching groups. We extend prior
work developed for teaching individuals to teaching groups
of human learners. Group teaching introduces challenges in
personalization because of differing individual knowledge. We
address these challenges by using aggregated team knowledge
representations and developing models of team beliefs. We
present several strategies for group teaching and finally propose
a user study design to evaluate the learning performance and
experience under these different strategies. We expect the re-
sults from this study will inform context-dependent adaptation
of teaching strategies for human-robot teams.

I. INTRODUCTION

Robots are getting more ubiquitous increasingly transition-
ing from tools that assist humans to collaborative teammates.
For safe and effective human-robot collaboration, humans
need to understand robot decision-making, often taught
through demonstrations [1] in which the human, frequently
modeled as inverse reinforcement learners [2], learns a robot
policy from demonstrations of desired behavior. Machine
teaching [3] aims to generate informative demonstrations for
human learners, but most of this research has focused on sin-
gle learners. In contrast, human-robot teams involve multiple
people, posing additional challenges due to diverse learning
abilities as the robot would have to teach its decision-making
to this entire group. In this work, we explore how can robots
teach a group of people using demonstrations.

Teaching a group as a whole instead of teaching each
person individually is preferable, especially in large groups
with limited time and resources. Take, for instance, ad hoc
emergency response team (see Fig. 1 (a)) tasked with build-
ing shelters after an earthquake and aided by a robot that can
bring requested items. The robot has limited maneuverability
over rubble, limited range, and may prefer to recharge when
possible. These capabilities and preferences (i.e. its decision-
making) must be taught to the team quickly because of
the time-sensitive situation. A challenge in group teaching
is accommodating individuals with varied learning abilities
(e.g., a mix of amateur volunteers and trained professionals
in the ad hoc team) by generating common demonstrations
for all. Prior work has shown that it is possible to teach
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a heterogeneous class using common examples [4], albeit
for simple concepts. While groups can also learn from
each other through communication and information sharing,
here, we focus on learning from common examples only.
Although group heterogeneity could also imply variations in
prior knowledge, here, we assume similar prior knowledge,
focusing solely on differences in learning ability.

Melo and Lopes [5] generated personalized demonstra-
tions for each of the learners, although at a high teaching
cost. In an educational setting, a teacher could develop
personalization strategies based on various objectives — they
could focus on slow learners, or on fast learners, or consider
the class as a whole using class average or similar measures
and adapt their teaching accordingly. Drawing parallels from
the education literature, our key insight is that group teaching
can be tailored by considering the team as a whole and can
generate demonstrations based on common representations
of team knowledge. While it is preferable for every team
member to have perfect knowledge about the robot decision-
making, not all tasks or situations might demand this. An
active teacher that personalizes and adapts to the learner
based on human feedback can improve learning [6], [7]. But
the challenge in groups is identifying which feedback to use
and to whom the personalization should cater.

In this work, we develop team belief models that facil-
itate group teaching focusing on the team as a whole. We
introduce a closed-loop teaching framework that effectively
incorporates human feedback to improve group teaching.
We propose a user study design to explore how the various
teaching strategies affect team learning in a situation where
perfect learning is not necessary. This work on adaptive
group machine teaching could generate interesting discus-
sions surrounding bi-directional human-robot learning, use
of human feedback, use of robot feedback for robot learning
from humans, etc., for safe reinforcement learning practices
in human-robot teams.

II. BACKGROUND

Markov Decision Process We model the environment
as a Markov Decision Process (MDP), given by the tuple
⟨S,A, T,R, γ,S′⟩, representing the state space, action space,
transition function, reward function, discount factor, and
initial state distribution respectively. An optimal trajectory
ξ∗ is a sequence of (si, a, s

′
i) tuples obtained by following

the robot’s optimal policy π∗. Similar to prior work [8],
R = w∗⊤ϕ(s, a, s′) is represented as a weighted linear
combination of reward features. We define a group of MDPs
that share R,A, and γ but differ in Ti, Si, and S0

i , as a
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Fig. 1. (a) An ad hoc team of emergency response personnel with potentially diverse individuals is provided with a robot to help with their team tasks.
To work well together safely the team has to understand the robot’s decision-making, expressed through its reward function. (b) To all team members, the
robot shows demonstrations to teach its reward function and gives tests to evaluate their knowledge about the robot’s reward function. The demonstrations
are generated based on belief about an individual’s knowledge, or the team’s common knowledge, which is knowledge everyone in the team has, or the
team’s joint knowledge, which is knowledge that at least one person in the team has. The provided demonstrations are, in turn, used to estimate the updated
knowledge they would gain from seeing the demonstrations and the test responses are used to update these estimates.

domain. Sharing the same R, ensures that all demonstrations
within the domain support inference over a common w∗.
We use the MDP formulation to model an item delivery task
where a robot is tasked with delivering an item through an
environment that has rubble, blocked regions, and a battery
recharge station (see Fig.1 (b)).

Machine teaching for policies: We adapt the machine
teaching framework for policies [9] to select a set of
demonstrations D of size n that maximizes the similarity
ρ between optimal policy π∗ and the policy π̂ recov-
ered using a computational model M (e.g., IRL) on D,
argmaxD⊂Ξ ρ(π̂(D,M), π∗) s.t. |D| = n, where Ξ is
the set of all demonstrations of π∗ in a domain. Once w∗ is
approximated through IRL, this approach assumes that the
learner can deduce π∗ by planning on the underlying MDP.
Thus, the objective reduces to selecting demonstrations that
are informative in conveying w∗, which can be measured
using behavior equivalence classes.

Behavior equivalence class: The behavioral equivalence
class (BEC) of a policy π is the set of reward functions under
which π is optimal. For a reward function that is a weighted
linear combination of features, the BEC of a demonstration
ξ of π is the intersection of half-spaces [10] formed by the
exact IRL equation [11]

BEC(ξ|π) := w⊤
(
µ(s,a)
π − µ(s,b)

π

)
≥ 0, ∀(s, a) ∈ ξ, b ∈ A. (1)

where µ
(s,a)
π = E [

∑∞
t=0 γ

tϕ (st) | π, s0 = s, a0 = a] is the
vector of reward feature counts accrued from taking action
a in s, then following π after. Any demonstration can be
converted into a set of constraints on w using (1), with
each constraint being a knowledge component (KC) [12]
that captures a facet of the reward function (e.g., tradeoffs
between the underlying reward features). Consider the item
delivery domain, which has binary reward features ϕ = [tra-
versed rubble, battery recharged, action taken]. In practice,
we require ||w∗||2 = 1 to bypass both the scale invariance

of IRL and the degenerate all-zero reward function. If no
prior knowledge is assumed, the potential belief space on
reward weights would uniformly span the surface of the n−1
sphere (n is number of domain features) due to the L2 norm
constraint on w∗. We instead assume that learners begins
with a prior that action weight is negative (e.g. favoring
shortest path, see Fig. 3 (a)).

Team modeling: A common way to represent a team char-
acteristic such as knowledge is by aggregating knowledge of
individuals. Team characteristics are normally represented as
average, median, sum, range, minimum, or maximum values
of the characteristic of individuals [13]. More recently, team
knowledge is represented using a latent collective intelligence
parameter that is highly correlated with team process and
performance [14]. However, operationalizing such a latent
parameter is difficult and we choose to represent team knowl-
edge by aggregating individual knowledge. We focus on two
aggregated representations of team knowledge — common
knowledge and joint knowledge. We define common team
knowledge as the knowledge that all team members have. It
can be visualized as the intersection of individual knowledge.
We define joint team knowledge as the knowledge that
at least one individual in the team has, visualized as the
union of individual knowledge (see Fig. 1 (b) for visual
representations of these).

III. METHODS

In this section, we discuss a particle filter-based model
for human beliefs proposed in [7] that supports iterative
Bayesian updates and sampling for counterfactual reasoning.
We extend this approach to group teaching problem to
model aggregated team beliefs. We use this model in a
closed-loop teaching framework that leverages insights from
the education literature, akin to [7], to adaptively generate
demonstrations based on beliefs of individual and aggregated
team knowledge.



A. Particle filter human belief model
We model human belief about the robot’s reward weights

using a particle filter, where each particle represents a poten-
tial belief about the robot’s reward function and the particle
weights are updated in a Bayesian manner based on con-
straints. The constraints correspond to expected knowledge
gain for demonstrations (that the robot expected the learner
to have gained after seeing the demonstration) and actual
knowledge gain for tests (that the robot estimates from their
test responses). This formulation enables iterative updates on
human belief from demonstrations and tests.

The particle filter updates after each demonstration or
test. Each demonstration generates multiple constraints by
comparing the optimal demonstration against possible coun-
terfactuals (robot behaviors that the human would’ve ex-
pected based on their beliefs). The test response, if incor-
rect, will generate a constraint by comparing the optimal
trajectory with the test response. Each constraint ci can
be converted to a probability distribution p(xi|ci) that in
turn is used to update the particle weights. We use the
custom probability distribution (refer Fig. 2 (a)) proposed
in [7], which is a combination of a uniform distribution
for the correct half-space of the constraint (indicating that
any particle lying in this space is equally valid for the
demonstration) and a von Mises-Fisher distribution for the
incorrect half-space (indicating that particles farther away
from the constraint are exponentially less likely to have
generated the demonstration). We refer the reader to [7] for
more details on the particle filter model. While we assume
that all team members have the same prior knowledge for
simplification, our approach can easily incorporate different
prior knowledge.
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Fig. 2. (a) The custom probability density function (pdf) for updating
particle weights based on a constraint generated. Figure reused from [7]
with author permission. (b) The proposed closed-loop teaching framework.

B. Modeling team beliefs
We extend the human belief particle filter model to model

beliefs on aggregated team knowledge. In this context, the
region spanned by the particles represents aggregated team
knowledge rather than individual knowledge. The primary
distinction in modeling team beliefs is how the particles
are updated, specifically in how individual constraints are
aggregated and used for updating the particle weights. For
the ad hoc team, let us assume that team members had
different responses to a set of n tests, and their constraints
are denoted as C1 = {c11, c21, ...cn1}, C2 = {c12, c22, ..., cn2},
and C3 = {c13, c23, ...cn3}. The update probability for each
individual is given by, Pi =

∏n
j=1 p(x

j
i |c

j
i ).

We operationalize common team knowledge by con-
sidering all individual constraints and representing it as
Cck = {c11, c12, c13, c21, c22, c23, ..., cn1 , cn2 , cn3}. We assume in-
dividuals to be independent. Consequently, the particle
filter representing common team knowledge is updated
based on the joint probability of all aggregated constraints
across all tests in the set for all the individuals. P =∏3

i=1

∏n
j=1 p(x

j
i |c

j
i ). This aligns with our definition of

common knowledge as the knowledge that everyone on
the team has. On the other hand, joint team knowledge
is operationalized by considering the set of constraints
for all individuals for each test separately and is repre-
sented as Cjk = {{c11, c12, c13}, {c21, c22, c23}, ..., {cn1 , cn2 , cn3}}.
Update probabilities are calculated individually for each
team member. The particles are then updated based on the
maximum probability of any of the individuals, given by,
P = argmaxi∈[1,2,3]

∏n
j=1 p(x

j
i |c

j
i ). This corresponds to our

definition of joint knowledge as the knowledge that at least
one team member has.

C. Closed-loop teaching

We develop a closed-loop teaching framework (see Fig.
2 (b) to sequentially generate demonstrations and tests to
teach and evaluate the team’s understanding of the robot
policy. Using the scaffolding techniques from [15], we select
individual knowledge components (KCs) that incrementally
increase in information across an increasing subset of fea-
tures. For example, the KCs could incrementally teach the
bounds on the cost of traveling through rubble given the
step cost, followed by bounds on the reward for recharging
given the step cost, and then trade-offs between these three.
The demonstrations are selected based on the KCs and the
knowledge condition (which individual/team knowledge to
cater towards). The demonstrations and test responses are
used to update the individual and team knowledge belief.
Fig. 3 shows a demonstration-test loop for teaching one KC.
The sequence of such demonstration-test loops are repeatedly
provided by the robot until all knowledge components have
been sufficiently learned by all the team members.

IV. PLANNED USER STUDY

We are currently developing an online user study to ex-
plore the impact of various group teaching strategies on team
understanding of the robot policy. We are considering four
strategies as the between subjects study condition to generate
demonstrations that are based on — (i) the individual with
the lowest knowledge, (ii) the individual with the highest
knowledge, (iii) team common knowledge, and (iv) team
joint knowledge, and a baseline condition of teaching each
person individually. We recognize that the baseline approach
might yield the highest knowledge gain, but it would need
more interactions (demonstrations and tests). The study will
teach the robot policy in the item delivery domain for
which we consider perfect knowledge is not necessary. The
differences in demonstrations among these strategies arise
from distinct belief models sampled from the knowledge
space spanned by the particles of corresponding knowledge.
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Fig. 3. A snippet of a sample teaching sequence. The individual and team knowledge starts with the same prior (a) since everyone is assumed to have the
same prior knowledge. The team sees a set of demonstrations (b) and is tested if they have understood the knowledge component in the demonstrations
(d). (c) The expected knowledge is the same for all individuals and the team models since everyone started with the same prior and is expected to have
learned the knowledge component completely. However, in this case, person P2 got the test response incorrectly, indicating they did not learn the knowledge
component correctly. The updated knowledge for each person is shown in (e) and the aggregated team knowledge is shown in (f). In both these figures,
the left plot shows the current particle weights and distribution, the center plot shows the correct half-space from the corresponding constraints, and the
right plot shows the updated particle distribution. The updated knowledge is used to the generate next set of demonstrations.

The associated distinct counterfactuals of the sampled belief
models are used for generating informative demonstrations.

A sample demonstration and test sequence is shown in Fig.
3 for the item-delivery task domain. Initially, with individuals
assumed to have the same prior knowledge, the first set of
demonstrations and expected knowledge are similar across
teaching strategies. The first set of tests also tends to be
similar. Individual and team knowledge remain alike until
someone answers a test question incorrectly. Suppose team
members P1 and P3 answer correctly, while P2 answers
incorrectly. In this scenario (as shown in Fig. 3 (e) and
(f)), the knowledge for P1 and P3 converges toward the
true reward, while P2’s response skews the team’s common
knowledge away from it. Conversely, the joint team knowl-
edge representation has particles close to the true reward
since atleast one person answered test correctly although
the particles are more spread out than P1 and P2 because
of the less precise information from the joint constraints.
Following the study condition, the next set of human belief
models is sampled from the corresponding knowledge space.
These demonstrations can vary significantly based on the
study condition for the same knowledge component. This
process continues until the team has learned the robot policy
sufficiently.

To measure knowledge learned, we utilize the commonly
used Jaccard Index [16]. We define knowledge learned, Ki

for member i as the ratio of the intersection of the true reward
region and the region spanned by the constraints/particles
representing their knowledge over the union of the same. A
perfect knowledge would have a value of 1 or 100%. This

knowledge metric also establishes the learning goal for the
user study, for example, achieving 80% of possible knowl-
edge. Additionally, we aim to collect subjective feedback
regarding workload, perception of understanding, comfort
level, etc.

Our hypothesis is that group teaching based on aggregated
team models will likely reach the learning goal with fewer
demonstrations and receive more positive feedback compared
to group teaching based on individual models, and especially
when compared to the baseline individual teaching approach.
We also anticipate that teaching individuals will yield the
highest knowledge gain, aligning with current findings.

V. CONCLUSION

We explore group machine teaching in this paper, as the
ability to safely collaborate and utilize robots in human-
robot teams depend on the team’s understanding of the
robot decision-making. Leveraging the insight that team
knowledge can be viewed as an aggregate representation
of individual knowledge, we extend the particle filter-based
human belief modeling and counterfactual reasoning-based
demonstration generation developed in [7] to group teaching
scenarios. We introduce methods to aggregate individual
knowledge and represent team knowledge in the context of
our teaching framework. Furthermore, we present a closed-
loop teaching framework to effectively incorporate human
feedback for generating tailored demonstrations. Finally, we
propose a user study to assess the performance of various
teaching strategies, based on individual and team knowledge,
in learning the robot policy.
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