
Human-Robot Collaboration for Assembling IKEA Furniture through
Reinforcement Learning-Based Planning

Giulio Giacomuzzo∗, Diego Romeres‡

Abstract— In this paper we consider the task planning prob-
lem of a Human-Robot collaborative scenario to assemble IKEA
furniture. The human is considered an uncontrollable agent and
the task planner schedules the optimal actions of the robot in
order to complete the full assembly task in the least amount
of time. We formalize the problem as a Discrete Event Markov
Decision Problem (DE-MDP) which allows to model stochastic
events such as human change of mind. While the problem
could be solved by creating a graph of all the possible actions,
this solution would have computational limitations. However,
the proposed formulation allows a solution with Reinforcement
Learning to compute an optimal policy for the robot.

I. INTRODUCTION

In recent years, the area of human-robot collaboration has
gained increasing attention because of the advancement of
robotics and artificial intelligence. The synergistic integration
of human dexterity and robotic precision holds great potential
especially for small- and medium-sized enterprises with
high-mix and low-volume productions. One particularly chal-
lenging yet promising test-bed application is the assembly
of IKEA furniture which involves dexterous manipulations,
precise alignments, transportation of cumbersome objects
and tasks that require more than two hands.

Central to the realization of this H-R collaborative vi-
sion is the development of robust planning algorithms that
combines the complementary strengths of both humans and
robots. This problem has recently been studied in literature
by several works. In [1] a Robust Plan Recognition and
Trajectory Prediction (RPR-TP) is proposed, where the hu-
man’s intentions and plan are recognized using a perception
module. The robot recognize the human plan and perform his
actions accordingly, but its contribution is limited to assistive
operations, without the possibility actively contribute to
the task advancement. In [2] the same authors propose a
collaborative framework where the robot plan is obtained in
order to minimize the total task completion time and promote
workspace separation. However, within this framework the
the possibility to collaborate together on the same joint task
is not considered. In [3] a robust planning algorithm based a
a Partially Observable Markow Decision Process (POMDP)
is developed. Therein the focus is on understanding how
to model the inherent coupling between the two agents
decision making processes, which makes determining both
the human and robot policies very complex. The proposed
solution introduces the ability for the two agents to perform
both individual and joint actions. However, they do not

1Department of Information Engineering, Università di Padova, Italy,
giacomuzzo@dei.unipd.it
2MERL, romeres@merl.com

Fig. 1: On the left-hand-side the components of the disassem-
bled IKEA Ivar chair are displayed. On the right-hand-side
the fully assembled chair is displayed (Image is downloaded
from IKEA website https://www.ikea.com/us/en)

consider actions of prolonged and different duration. A
decentralized multi-agent framework was proposed in [4],
where teams of humans and robots are considered to perform
together a collaborative task. This work focuses on planning
with actions of extended time duration, also considering the
problem of handling failures. However, the possibility of
performing joint actions is not considered. In general, to the
best of the authors’ knowledge, a framework for collaborative
assembly scheduling which combines both the ability to
work on independent tasks and to cooperate together on joint
actions, tacking into consideration realistic problems such as
the human change of mind or the human action detection
delay, still lacks in literature.

In this paper we bridge this gap by presenting a novel
framework for the scheduling problem in collaborative
assembly tasks. First, we assume the human behavior to
be inherently uncontrollable, with its decision making only
being observed by the robot after an action detection time.
This defines a general framework with no assumptions on
the human behavior and a reactive robot to all the actions
observed. Consequently, the problem is a single agent task
where the robot plans the actions based on the environment
state and on the decisions made by the human. Then, the
collaborative assembly scheduling is modeled as a Discrete
Event Markov Decision Process (DE-MDP), where the state
dynamics is driven by the occurrence of significant events
such as action completion, action detection or human change
of mind. We consider two methods to solve the DE-MDP,
the first one based on a deterministic decision graph, the
second one based on Reinforcement Learning (RL). Results
on both toy problems and on a simulated chair example
show that RL converges to the optimal policy when the
interaction is not affected by uncertainty, and provides a

https://www.ikea.com/us/en

Fig. 2: A possible HTM model for Ivar chair assembly task.

viable solution when stochasticity is taken into consideration.

II. PROBLEM FORMULATION

Assembly tasks can be seen as a hierarchical set of atomic
tasks, hereafter denoted as macro-actions, which must be
executed complying with a set of ordering constraints. In
this work, we assume macro-actions to be either individual or
joint actions. Individual actions can be executed by a single
agent either the human ah or the robot a. Joint actions must
be executed by both the agents at the same time. Moreover,
we consider the macro-actions to have different duration,
which depends on the action itself and on the agent executing
it. The scenario includes two agents but we consider the
human to be an uncontrolled agent. Therefore, the assembly
is modeled as a single agent problem in which the goal is to
learn the robot policy πθ (·) which minimize the execution
time and reacts to the human choices.

The aforementioned setting introduces interesting chal-
lenges, which we aim to address within our framework.
Synchronization: the human and the robot can work in
parallel on different macro-actions but have to perform joint
actions together. Since macro-actions have different duration,
agent synchronization is required to perform joint actions.
Human detection: as the human behave uncontrolled and
the robot has to adapt its actions to the human choices, hu-
man action detection is required. This inevitably introduces
a delay into the robot action scheduling, which needs to be
considered by the planner.
Human change of mind: the human could begin a task, and
then suddenly change its mind and starting performing a new
task. In that case, the robot should reschedule its plan.

To address the aforementioned challenges, we consider the
following assumptions. i) Joint action can be chosen only
by the human. In case the human chose a joint action, the
robot joins them as soon as it finishes the ongoing action.
ii) We introduce an additional action called idle, which can
be performed by both the agents. When idle, the agent is
waiting, without contributing to the task advancement. We
use the idle as a synchronization before a joint action: when
the human chooses a joint action, they remain idle until the

robot has completed its action. When the robot finishes, the
two agents perform the joint action together. iii) If the human
action has not been detected, the robot must remain idle. iv)
The change of mind can occur only if the human action has
been detected. After a change of mind, another detection is
required.

A. Hierarchical Task Model for Assembly task description

As proposed in [2], we rely sequential/parallel Hierarchi-
cal Task Model (HTM) for task representation. An example
of HTM for the assembly of a chair is reported in Fig. 2.
Within the HTM representation, the root node represents
the entire assembly, while all the other nodes represent
assembly subtasks. The leafs represent the macro-actions
to be executed. Each node can be categorized as parallel
(∥), sequential (→) or independent (⊥). Children of parallel
nodes can be executed at the same time by the two agents,
in any order. Children of sequential nodes, instead, must
be individually executed in the specified order (from left
to right). Finally, children of independent nodes must be
individually executed, but can be performed in any order.

In our framework, the HTM provides the sequential con-
straints on action executions, which are encoded in the DE-
MDP described in the next Section.

III. ROBOT TASK SCHEDULER

In this section we describe the proposed method to model
and solve the collaborative assembly scheduling. Our method
describe the system as a Discrete Event Markov Decision
Process (DE-MDP). A DE-MDP is an MDP in which the
state transitions do not happen on a fixed time basis, but
are determined by the occurrence of events. In the case
of collaborative assembly tasks, the tasks advancement is
related to the completion of macro-actions which have differ-
ent, possibly stochastic, duration. Moreover, the cooperation
state is also modified by events such as the human action
recognition or the human change of mind.

This modeling choice allows to unify under the same
framework many desirable properties for cooperative assem-
bly that were scattered in several different works in literature.

A. Discrete Event Markov Decision Process

Consider an assembly task composed by N macro-actions.
The collaborative scheduling problem is modeled as a DE-
MDP (S, A, E , Γ, ℓ, T , R, γ), where S is the state space
of the system; A is the action space; E represents the set
of possible events; Γ(s) is the set of feasible events at state
s ∈ S; ℓ(s,a,e) is the event lifespan function, which gives the
probability distribution over the time after which the event e
is likely to occur at the current state s ∈ S and robot action
a∈A; T (s,a,s′,e) is the transition probability function which
gives the probability of transitioning to state s′ given the
current state s the current robot action a and the event e;
R(s,a,e) is the reward function and γ the discount factor.

Differing from the standard MDP framework where the
state update occurs at every time step, the DE-MDP state
transition happens only in presence of a significant event.

We will use the index variable k to represent the time
instant of the state evolution. Moreover, ∆tk denotes the time
spent by the system to transition from state sk to sk+1 and,
for convenience, it is multiple of a discrete time step T̄ .
Therefore, the variable time step, ∆tk, at which the DE-MDP
state updates depends on the event lifespan ℓ(sk,ak,ek), with
ek being the event causing the system transition from sk to
sk+1. In the following, for notation simplicity we will explicit
the dependence on the index k only when necessary.

In the following the elements of the DE-MDP are detailed.
a) States: the system state is s=(sa, ah, th, tr, d) where

sa ∈ {0,1}N is the macro-actions execution indicator, the i-th
component representing the i-th macro-action being executed
or not; ah ∈ {0, . . . ,N} is the current human macro-action
which is part of the state because the agent cannot be
controlled; th ∈ N is time elapsed since the current human
macro-action started; tr ∈ N is the time since the current
robot macro-action started; d ∈ {0,1} indicates if the current
human action has been detected.

b) Actions: the actions set A includes all the macro-
actions that can be executed by the robot. Let Ā =
{a1, . . . ,aN} be the set of all possible macro-actions to
complete the task. Moreover, let us denote with aN+1 the
idle macro-action. We model each macro-action as a tuple
(o j,δ j), where o j ∈ {0,1,2,3} denotes if the action can be
performed by the human (0), by the robot (1), by both the
agents (2) or is a joint action (3); δ j = [δ h

j ,δ
r
j] represents

the nominal action duration when performed by the human
(δ h

j) or by the robot (δ r
j). Note that in case of joint actions,

δ h
j and δ r

j are equal and the idle macro-action lasts until a
triggering events happens. For the sake of simplicity, in this
work the duration of the macro-actions is deterministic and
known. Within this formalism, we define the action space as
A = {a j ∈ Ā|o j ̸= 0}∪{aN+1}.
Feasible Actions: A f is the set of all feasible actions for the
two agents at the current state. The non feasible actions are:
the the macro-actions already completed, the current action
being executed by the other agent and the idle action for the
robot if the human is already idle, to avoid infinite cycles.

c) Events: the set E = {H, R, D,C} contains the events
triggering the state transitions, where H represents the end
of a human action, R represents the end of a robot action,
D represents the human action detection and C represents
a human change of mind. Note that, the probability of an
event happening p(e|s,a) can be fully determined by the
current state s ∈ S and robot action a ∈ A. In particular, if
e =C, we denote with pc ∈ [0,1] the probability of a human
change of mind to happen. Then, p(C|s,a) represents the
probability of having a change of mind before the next H or
R event. The probability of having a change of mind before
the next H event is pc, as, if the change of mind happens,
it will for sure happen before the end of the current human
action. The probability of having a change of mind before
the next R event, instead, depends on the time at which the
next C and R will happen. Let ∆C and ∆R be the lifespans
of C and R, respectively. Then, C will happen before R with
probability pc pcr, with pcr being the probability p(∆C <∆R).

See the paragraph regarding the lifespan function for the
description on how the lifespan distributions are defined.
Note that pcr = 1 if ∆R >∆H . We can in general conclude that
p(C|s,a) = pc pcr. Then, if e=H, the probability p(H|s,a) is
0 if the robot finishes its action before the human i.e., δ r

a −tr

< δ h
ah − th, while it is 1 − p(C|s,a) if the human finishes

before the robot. Analogous reasoning applies for the event
e = R. Finally, if e = D, p(D|s,a) = 1 if d = 0, otherwise
p(D|s,a) = 0.

d) Feasible event set: Γ(s) : S →E ⊆ E provides the set
of feasible events given the current state s ∈ S. In particular
we have: Γ(s|d = 0) = {D}, namely if the human action
has not been detected, the only feasible next event is the
detection, while if the human action has been detected all the
other events are feasible, namely Γ(s|d = 1) = {H ,R ,C}.

e) Event lifespan: the event lifespan function ℓ(s,a,e)
provides a probability distribution over the time spent by
the system in the current state s ∈ S with the current robot
action a ∈ A, before transitioning to the next state due to
the event e ∈ E , namely ℓ(s,a,e) = p(∆e|s,a), with ∆e being
the time after which the event e will occur given s and a.
In the assembly scenario we are considering, if e = D then
∆D = ∆̄D with probability 1, where ∆̄D represents the human
action detection time, which we assume to be deterministic
and known. If e = H, ∆H = δah − th. If e = R, ∆R = δar − tr.
Finally, we model the lifespan ∆C of the event e = C as
a discretized truncated exponential distribution with support
spanning the time interval from the detection time to the end
of the human macro-action.

f) Transition: The transition function T (s,a,s′,e) pro-
vides the probability of transitioning to the next state s′ ∈ S
given the current state s and the current robot action a
due to the occurrence of the event e. We define in the
following the transition probability for each possible event
in the collaborative assembly scenario we are considering. If
e=D, namely the event is a human action detection, the only
effect on the state is the deterministic transition of d from 0
to 1. If e = H, namely the event is a human action end, the
transition will affect sa, ah, d and th. In particular, sa will
transition to s′a = sa+1ah , where 1a j ∈ {0,1}N+1 is the vector
containing all zeros except for the component corresponding
to a j. ah will transit to ah′ according to the human policy,
which we consider to be known. Finally, d′ = 0 and th′ = 0.
If e = R, the transition will affect sa and tr, in particular
s′a = sa + 1a and tr ′ = 0. Finally, a change of mind e = C
will cause the human and consequently the robot to change
action, namely ah′ will be chosen according to the human
policy, while th′ = 0 and tr ′ = 0.

g) Reward: as we aim to minimize the execution time,
we model the reward as the negative transition time, namely
R(s,a,e) =−∆t .

B. DE-MDP Solutions

Solutions to the DE-MDP provide a robot policy πθ (·)
mapping the current state s to the next robot action a. In this
work we consider two solutions, one based on a deterministic
decision graph and the other one obtained using RL.

a) Decision Graph: given the DE-MDP description,
a decision graph can be built assuming a deterministic
setting, namely considering the nominal values for macro-
actions duration and disregarding stochastic events such as
the human change of mind. A decision graph is a directed
graph in which each node represents a state, while each edge
represent a robot action. It can be built starting from the
initial state and computing, for each state, all the possible
transitions, until the final state is reached. Each edge of
the graph is weighted with the cost of the transition (e.g.
the transition time). Then, any graph search algorithm (e.g.
Dijkstra [5]) can compute, for each state, the minimum cost
path to the final node. The union of all the paths is the
optimal policy and it can be computed offline and stored in
a look-up table. Nonetheless, the generation of the decision
graph can be particularly inefficient or even infeasible both in
terms of computational time and storage requirements, when
the number of macro-actions and possible transition increase.
Moreover, stochasticity is not taken into consideration and
the policy can only react to stochastic events.

b) Reinforcement Learning: Given the problem formal-
ization as an MDP, RL algorithms are well suited to over-
come the limitation of the approach based on the decision
graph. In particular, in presence of predictable stochastic
events, RL can learn the stochastic dynamics and exploit the
information to take preventive actions. Moreover, parametric
function approximators can be exploited in presence of high
dimensional state-action spaces to reduce the computational
and storage burden.

IV. SIMULATIONS

In this section we show that RL can be effective in solving
the planning problem in two different cases: i) a deterministic
setting, in which the human policy πh(s,a) is deterministic
and the human does not change action, and ii) a stochastic
setting with a random human policy and the RL performance
are evaluated as the amount of change of mind increases.
In both settings the RL policy is trained with the Proximal
Policy Optimization (PPO) algorithm [6]. To this aim, we
implemented the DE-MDP described in Section III-A as a
custom Gym environment [7] and used the Stable Baselines
library [8] for policy training. The training process is sped
up using action masking to limit the explored actions only
to A f , as explained in [9].

A. Deterministic setting

In the deterministic case we designed 4 toy experiments
with number of macro-action varying from n = 8, to n =
32. For each experiment, we generated a random HT M,
composed of n

4 joint macro-actions and n
2 only robot actions.

The remaining macro-actions can be performed by either the
human and the robot. The duration of the macro-action dura-
tion is randomly generated between 4T̄ and 16T̄ . Moreover,
we considered also the realistic example of the IKEA Ivar
chair assembly (see Fig. 1 and 2). The performances of the
RL policy are compared with those of the graph based policy,
which in this setting represents the optimal policy. Results

Fig. 3: Average completion time obtained with the Monte
Carlo experiments presented in Section IV-B, at the increase
of the number of changes of mind. Results are reported as
number of discrete time steps.
are reported in Tab. I in terms of number of steps T̄ required
to complete the task. In all the 4 considered experiments,
the RL policy produces the same results of the Graph policy,
which confirms that RL is able to learn the optimal policy.

8 Actions 16 Actions 24 Actions 32 Actions Chair

PPO 91 157 240 305 73
Graph 91 157 240 305 73

TABLE I: Completion time on the deterministic experiments.
Results are reported in terms of number of time steps T̄ .

B. Stochastic setting

In the stochastic setting, we assumed the human chooses
its action randomly among the set of feasible actions, and we
considered different levels of change of mind probability pc,
from 0.1 to 0.9. For each value of pc, we trained a policy with
PPO and tested it with a Monte Carlo experiment composed
by 1000 simulations. Fig. 3 plots the the mean completion
time against the number of changes of mind occured, for
the tasks considered in the previous section. As one can
expect, at the increase of the change of mind probability, the
average completion time increases. However, the RL policy
is able to deal with the change of mind and compute a
viable solution. Further experiments and comparisons against
different methods will be performed to assess the optimality
of the RL solution.

V. DISCUSSION AND CONCLUSIONS

We have formalized the collaborative assembly of IKEA
furniture between a Human and a Robot as a Discrete
Event Markov Decision Problem. The proposed framework
models at the same time all the properties of Parallel-,
Sequential-, Joint- Independent-, Asynchronous- and with
Variable Duration- macro actions, and includes Human intent
detection and change of mind. To the best of our knowledge,
none of the previous literature has proposed a model for
all of these properties at the same time. The formulation as
DE-MDP also makes the problem treatable with RL which
solves the problem of computational complexity of graph
based solutions. We solved in simulations both toy problems
and an HTM of a real IKEA Ivor Chair. In the future we will
also consider more stochastic events such as failure cases and
will also deploy the algorithm to assemble a real IKEA chair.

REFERENCES

[1] Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards efficient
human-robot collaboration with robust plan recognition and trajectory
prediction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
2602–2609, 2020.

[2] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning
based on a hierarchical task model,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 1136–1143, 2021.

[3] Y. You, V. Thomas, F. Colas, R. Alami, and O. Buffet, “Robust robot
planning for human-robot collaboration,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023.

[4] N. Dhanaraj, S. V. Narayan, S. Nikolaidis, and S. K. Gupta,
“Contingency-aware task assignment and scheduling for human-robot
teams,” in 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2023, pp. 5765–5771.

[5] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[7] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[8] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[9] S. Huang and S. Ontañ ón, “A closer look at invalid action
masking in policy gradient algorithms,” The International FLAIRS
Conference Proceedings, vol. 35, may 2022. [Online]. Available:
https://doi.org/10.32473%2Fflairs.v35i.130584

https://zenodo.org/record/8127025
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.32473%2Fflairs.v35i.130584

	Introduction
	Problem Formulation
	Hierarchical Task Model for Assembly task description

	Robot Task Scheduler
	Discrete Event Markov Decision Process
	DE-MDP Solutions

	Simulations
	Deterministic setting
	Stochastic setting

	Discussion and Conclusions
	References

