
Learning Plan-Satisficing Motion Policies from Demonstrations

Yanwei Wang∗, Nadia Figueroa†, Shen Li∗, Ankit Shah‡, Julie Shah∗
∗MIT CSAIL, †University of Pennsylvania, ‡Brown University

Abstract—Learning from demonstration (LfD) methods have
shown promise for solving multi-step tasks; however, these
approaches do not guarantee successful reproduction of the task
given perturbations. In this work, we identify the roots of such
a challenge as the failure of the learned continuous policy to
satisfy the discrete plan implicit in the demonstration. By utilizing
modes (rather than subgoals) as the discrete abstraction and
motion policies with both mode invariance and goal reachability
properties, we show our learned continuous policy can simulate
any given discrete plan. Consequently, the imitator is robust
to both task- and motion-level perturbations and guaranteed to
achieve task success. Project page: https://yanweiw.github.io/tli/

I. INTRODUCTION

In prior work, learning from demonstration (LfD) [1] has
successfully enabled robots to accomplish multi-step tasks by
segmenting demonstrations into subtasks/subgoals [2], phases
[3], keyframes [4], and primitives [5]. Most of these ab-
stractions assume reaching subgoals sequentially will deliver
the desired outcomes. However, successful imitation of many
manipulation tasks with spatial/temporal constraints cannot be
reduced to imitation at the motion level unless the learned
motion policy also satisfies these constraints. For example,
transferring a spoonful of soup without restricting the orienta-
tion of the spoon can fail due to spilling even when the spoon
reaches the target successfully.

We show that successful goal-reaching does not imply
successful task execution in Fig. 1 with a 2D task, where task
success depends on whether a continuous trajectory simulates
a discrete plan of transitioning through the white, yellow,
pink and green regions consecutively. Human demonstrations,
shown in Fig. 1(a), are employed to learn a dynamical system
(DS) policy [6] depicted by the streamlines in Fig. 1(b).
Of all sampled trajectories, only the blue ones succeed in
the task. The red ones fail as they simulate at least one
discrete transition not physically realizable (e.g., white ⇒
pink). The issue is not mitigated by further segmenting the
demonstrations into three subgoals and learning a DS for each
subgoal, as seen in Fig. 1 (c-f). While one can frame this
problem as covariate shift and solve it by asking humans for
more demonstrations [7], we frame it as the mismatch between
a learned continuous policy and a discrete task plan and solve
it by asking humans for a task specification.

Specifically, the core challenges illustrated by this exam-
ple are two-fold: 1) Subgoals only impose point constraints
that are insufficient to represent the boundary of a discrete
abstraction. 2) The continuous policy may deviate from a
demonstrated discrete plan and in such cases cannot replan to
ensure all discrete transitions are valid. Instead, our approach
employs “modes” as the discrete abstraction. We define a mode
as a set of robot and environment configurations that share the

Fig. 1. A mode abstraction of a soup-scooping task. x1 denotes spoon
orientation and x2 represents spoon distance from the soup. (a) Task: White
region (all spoon configurations without soup on it) ⇒ yellow region (spoon
in contact with soup) ⇒ pink region (spoon holding soup) ⇒ green region
(soup at target). Note transitions (white ⇒ pink) and (white ⇒ green) are not
physically realizable. The black curves denote two successful demonstrations.
(b) Learning a dynamical system (DS) policy [6] over unsegmented data
can result in successful task replay (blue trajectories), but lacks a guarantee
due to invalid transitions (red trajectories). (c) Trajectories segmented into
three colored regions (modes), with orange circles denoting attractors. (d-f)
Learning individual DS over segmented trajectories still results in invariance
failures (i.e., traveling outside of modes) for some starting configurations (red
trajectories) as we perturb the spoon during task replay.

same sensor reading [8]. For example, in Fig. 1 each colored
region is a unique mode and has a boundary that imposes
path constraints on motion policies. Additionally, we use a
task automaton as a receding horizon controller that replans
when a perturbation causes the system to travel outside a mode
boundary. For example, detecting a transition of yellow ⇒
white instead of the desired yellow ⇒ pink will result in a
new plan: white ⇒ yellow ⇒ pink ⇒ green.

In this work, we assume the task automaton is given in
the form of a Linear Temporal Logic formula. We denote
the challenge of learning a continuous policy that can realize
any discrete plan of valid mode transitions specified by the
automaton as temporal logic imitation (TLI). In contrast to
temporal logic planning (TLP) [9], where the workspace is
typically partitioned into connected convex cells with known
boundaries, TLI does not assume knowing mode boundaries.
Consequently, the learned policy might prematurely exit a
mode if the robot is perturbed to out-of-distribution states.
To guarantee any discrete plan is feasible during execution at
the continuous level, we show a learned policy with a global
stability property can be refined to satisfy the bisimulation
criteria [9] through human perturbations. By studying TLP
in the setting of LfD, we are able to address covariate shift
through learning motion policies that always obey discrete

https://yanweiw.github.io/tli/


plans without additional online data collection.

II. TEMPORAL LOGIC IMITATION FORMULATION

A. Robot Model and Sensor Model

We use a first-order dynamical system ẋ = f(x) to represent
the desired evolution of a robot end-effector, where x =
[x1, ..., xn]

T ∈ Rn describes an n-dimensional continuous
robot state. Let discrete sensor state α = [α1, ..., αm]T ∈
{0, 1}m be an m-dimensional sensor variable. We convert all
sensor signals into Booleans to identify different modes. We
define a system state as a tuple s = (x, α) ∈ Rn×{0, 1}m and
its corresponding mode σ ∈ Σ as σ = L(α). Overloading the
notation, we use σ to represents the set of all system states in
the same mode, i.e., σi = {s = (x, α) | L(α) = σi}. In con-
trast, δi = {x|s = (x, α) ∈ σi} represent the corresponding
set of robot states. In this work, we only consider task-space
end-effector pose control of a manipulator.

B. Demonstrations and perturbations

Demonstrations are in the form {{xt,k, ẋt,k, αt,k}Tk
t=1}Kk=1,

where xt,k, ẋt,k, αt,k are robot state, velocity, and sensor state
at time t in demonstration k. Tk is the length of each k-th
trajectory. Given l number of unique sensor states, we can
segment the K demonstrations into l clusters of modes. We
learn a policy for each mode, which we stress test with either
(1) motion-level perturbations that displace the continuous
motion within the same mode, or (2) task-level perturbations
that drive the system outside of the current mode.

C. Problem Statement

Given (1) a task automaton ϕ specifying valid mode tran-
sitions to achieve a task, and (2) successful demonstrations
{{xt,k, ẋt,k, αt,k}Tk

t=1}Kk=1, we want to imitate a continuous
policy that can realize any discrete mode sequence planned
by the automaton despite arbitrary perturbations.

III. METHOD

A. Bisimulation between Discrete Plan and Continuous Policy

To realize any discrete plan, every mode’s associated con-
tinuous policy must satisfy the bisimulation conditions: [9].

Condition 1 (Invariance). Every continuous motion starting
in a mode must remain within the same mode while following
the current mode’s policy; i.e., ∀i ∀t (s0 ∈ σi → st ∈ σi)

Condition 2 (Reachability). Every continuous motion start-
ing in a mode must reach the next mode in the demonstration
while following the current mode’s policy; i.e., ∀i ∃T (s0 ∈
σi → sT ∈ σj)

B. Ensuring Goal Reachability by DS

We associate each mode σi with a state-based policy
ẋ = fi(x). While any BC variant with a stability guarantee
can satisfy reachability, we focus on DS in this work. DS
fi has domain Rn and goal set gi = {x∗

σi
} with x∗

σi
being

the attractor. DS is globally asymptotically stable (G.A.S) and
every x ∈ Rn is guaranteed to reach x∗

σi
. By putting x∗

σi
in

Fig. 2. Illustration of iterative estimation of mode boundary with cutting
planes. A system enters a mode with unknown boundary (dashed line) at the
black circle and is attracted to the goal at the orange circle. Its trajectory
in black shows the original policy rollout, and its trajectory in red is driven
by perturbation. When the system exits the mode, a cut is placed at the last
in-mode state (yellow circle) to bound the mode from the failure state (red
cross), and the system is reset to the entry state. When the system is inside the
cuts, it experiences modulated DS that never leaves the mode (flows entering
the mode are not modulated). When the system is outside the cuts but inside
the mode, it follows the original DS. Notice only mode exits in black are
invariance failures in need of modulation. Mode exits in red are driven by
perturbation to illustrate that more cuts lead to better boundary approximation.

the boundary set of δj for a mode σj , we ensure mode σj

is reachable from every s in mode σi. Next, we follow [6] to
represent a non-linear DS as a weighted sum of linear systems:
ẋ = f(x) =

∑K
k=1 θk(x)(A

kx + bk) where Ak ∈ Rn×n

and bk ∈ Rn are the k-th linear system parameters, and
θk(x) : Rn → R+ is the mixing function. To certify stability,
we use Lyapunov function V (x) = (x− x∗)TP (x− x∗). The
nonlinear DS is G.A.S at an attractor x∗ if ∃P = PT and
P ≻ 0 such that:{

(Ak)TP + PAk = Qk, Qk = (Qk)T ≺ 0

bk = −Akx∗ ∀k (1)

Minimizing the fitting error with respect to demonstrations
subject to constraints in Eq. 1 finds us a non-linear DS with
a stability guarantee.

C. Ensuring Mode Invariance by Modulating DS

First, we estimate unknown mode boundaries by leveraging
sparse events of mode exits detected by sensors. Specifically,
for each invariance failure we construct a cut that separates
the failure state xTf from the mode-entry state, the last in-
mode state xTf−1, and the mode attractor x∗. We ensure
this separation constraint with a quadratically constrained
quadratic program (QCQP) and search for the normal direction
(pointing away from the mode) of a hyper-plane that goes
through xTf−1 such that the plane’s distance to x∗ is min-
imized. The intersection of half-spaces cut by hyper-planes
inner approximates a convex mode boundary as seen in Fig. 2.
Second, the cuts, which deflect DS flows as collision objects
[10], together form an implicit function Γ(x) : Rn → R+

with Γ(x) < 1, = 1, > 1 denoting the current estimated



Fig. 3. Policy rollouts from different starting states for a randomly generated convex mode. The top row shows BC results and the bottom row shows
DS results. The left column visualizes the original policies learned from 2 demonstrations (black trajectories). The orange circle indicates an attractor. The
middle columns add different levels of Gaussian noise to the initial states sampled from the demonstration distribution. Blue trajectories successfully reach the
attractor while red trajectories fail either due to invariance failures or reachability failures. Notice these failures only happen at places without data coverage.
Right columns show cutting planes (blue lines) separate failures (red cross) from last visited in-mode states (yellow circles) and consequently can modulate
policies to be mode invariant. Applying cutting planes on BC policies cannot correct reachability failures within the mode. More results are on the website.

interior, boundary and exterior of a mode. Γ(x) monotonically
increases from 0 as x moves away from a reference point xr

inside the mode to infinity. We modulate f(x):
ẋ = M(x)f(x) with M(x) = E(x)D(x)E(x)−1

E(x) = [r(x) e1(x) ... ed−1(x)] r(x) = x−xr

∥x−xr∥
D(x) = diag(λr(x), λe(x), λe(x), ..., λe(x))

λr(x) = 1− Γ(x) λe(x) = 1
(2)

where M(x) is constructed through eigenvalue decomposition.
The full-rank basis consists of a reference direction r(x)
stemming from xr towards x, and d−1 directions that span the
hyperplane orthogonal to ∇Γ(x). In other words, all directions
e1(x)...ed−1(x) are tangent to the closest cut except r(x). By
modulating only the diagonal component λr(x) with Γ(x), we
have λr(x) → 0 as x approaches the closest cut, effectively
zeroing out the velocity penetrating the cut while preserving
velocity tangent to the cut.

Policy Reachability Invariance No Noise Small Noise Large Noise
BC ✗ ✗ 88.9 72.4 58.6

BC+mod ✗ ✓ 91.9 83.6 76.0
DS ✓ ✗ 100 97.0 86.9

DS+mod ✓ ✓ 100 100 100

No Noise Small Noise Large Noise
0

20

40

60

80

100

%
 T

as
k 

S
uc

ce
ss

BC
BC+mod
DS
DS+mod

Fig. 4. Single mode reaching task success rate (%). For each randomly
generated convex mode, we sample 100 starting states and compute the
average success rate for 50 trials. As we start to sample out of distribution by
adding more noise, the BC’s success rate degrades more rapidly than the DS
policy’s. After modulation DS (+mod) maintains a success guarantee which
BC (+mod) lacks due to the base policy’s lack of a stability guarantee.

IV. EXPERIMENTS

A. Single Mode Invariance and Reachability

We show quantitatively both reachability and invariance are
necessary to achieve 100% task success rate in figure 4. We
compare DS and a NN-based BC policy (denoted as BC)
to represent policies with and without a stability guarantee.
Figure 3 shows that policy rollouts start to fail (turn red)
as increasingly larger perturbations are applied to the starting
states; however, DS only suffers from invariance failures, while
BC suffers from both invariance and reachability failures (due
to diverging flows and spurious attractors). Figure 3 (right)
shows that all flows are bounded within the mode for both
DS and BC after two cuts. In the case of DS, flows originally
leaving the mode are now redirected to the attractor by the
cuts; in the case of BC, while no flows leave the mode
after modulation, spurious attractors are created, leading to
reachability failures.

B. Multi-Modal Reactivity

We now show empirically having a reactive discrete plan
is insufficient to guarantee task success without mode in-
variance for tasks with multiple modes. Consider the task
introduced in Fig. 1: scooping and transporting soup. For-
mally, we define four modes: (a) starting empty spoon, (b)
sensing the spoon is in contact with the soup, (c) sensing
the spoon has soup on it, and (d) sensing the spoon has
arrived at a target location. During successful demonstrations,
we observe the following discrete transitions a (reaching) ⇒
b (scooping) ⇒ c (transporting) ⇒ d (done) . Invariance
of mode b enforces contact during scooping and invariance
of mode c constrains the spoon orientation to avoid spilling.
One might assume having a task automaton is sufficient to
guarantee task success without modulation, as it only needs
to replan a finite number of times assuming a finite number
of perturbations; however, not enforcing mode invariance can



Fig. 5. Rollouts of multi-step scooping task under perturbations. The orange circle indicates the attractor for the current mode. We show the mode sequence
planned by the automaton at the top of each sub-figure with the blue bounding box indicating the current mode transition actually detected. The trajectory
in black is the rollout following the original policy, and the trajectory in red is driven by perturbations. The first row shows DS policies sequenced by an
automaton but without boundary estimation can lead to looping. The second and third rows show modulation can prevent looping and eventually allow the
system to reach the goal mode despite repeated perturbations. Please check the video in the project page.

lead to looping at the discrete level, and ultimately renders
the goal unreachable, as depicted in the top row of Fig. 5. In
contrast, looping is prevented when modulation is enabled, as
the system experiences each invariance failure only once.

V. CONCLUSION

In this paper, we introduce temporal logic imitation as
the problem of learning plan-satisficing motion policies. We
identify one challenge of applying LfD methods to multi-step
tasks as being that the learned controllers do not necessarily
satisfy the bisimulation criteria. To address this issue, we pro-
pose a DS-based approach that can iteratively estimate mode
boundaries to ensure invariance and reachability. Combining
the task-level reactivity of a task automaton and the motion-
level reactivity of DS, we arrive at an imitation learning system
that can robustly perform a multi-step scooping task under
arbitrary perturbations given only a few demonstrations.

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and
A. Billard, “Recent advances in robot learning from
demonstration,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, pp. 297–330, 2020.

[2] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and
L. Fei-Fei, “Learning to generalize across long-horizon
tasks from human demonstrations,” arXiv preprint
arXiv:2003.06085, 2020.

[3] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and
J. Peters, “Towards learning hierarchical skills for multi-
phase manipulation tasks,” in 2015 IEEE international

conference on robotics and automation (ICRA). IEEE,
2015, pp. 1503–1510.

[4] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz,
“Trajectories and keyframes for kinesthetic teaching: A
human-robot interaction perspective,” in Proceedings of
the seventh annual ACM/IEEE international conference
on Human-Robot Interaction, 2012, pp. 391–398.

[5] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Os-
entoski, “Incremental semantically grounded learning
from demonstration.” in Robotics: Science and Systems,
vol. 9. Berlin, Germany, 2013, pp. 10–15 607.

[6] N. Figueroa and A. Billard, “A physically-consistent
bayesian non-parametric mixture model for dynamical
system learning.” in CoRL, 2018, pp. 927–946.

[7] S. Ross, G. Gordon, and D. Bagnell, “A reduction of
imitation learning and structured prediction to no-regret
online learning,” in Proceedings of the fourteenth inter-
national conference on artificial intelligence and statis-
tics. JMLR Workshop and Conference Proceedings,
2011, pp. 627–635.

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task
and motion planning,” Annual review of control, robotics,
and autonomous systems, vol. 4, pp. 265–293, 2021.

[9] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis
for robots: Guarantees and feedback for robot behavior,”
Annual Review of Control, Robotics, and Autonomous
Systems, vol. 1, pp. 211–236, 2018.

[10] S. M. Khansari-Zadeh and A. Billard, “A dynamical
system approach to realtime obstacle avoidance,” Au-
tonomous Robots, vol. 32, no. 4, pp. 433–454, 2012.


	Introduction
	Temporal Logic Imitation Formulation
	Robot Model and Sensor Model
	Demonstrations and perturbations
	Problem Statement

	Method
	Bisimulation between Discrete Plan and Continuous Policy
	Ensuring Goal Reachability by DS
	Ensuring Mode Invariance by Modulating DS

	Experiments
	Single Mode Invariance and Reachability
	Multi-Modal Reactivity 

	Conclusion

