
Discovering Symmetries
Brennan Cottrell, Justice Roberts, Juan Rojas.

Abstract—Deep Reinforcement Learning (DRL) is known to
incur in high sample complexity often requiring millions of steps
to optimize function representations. Recently, the use of group
theory has enjoyed significant interest. The use of symmetry has
been used both for data augmentation or to embed symmetry
in neural net layers via equivariance. Nonetheless, both sets of
approaches require specific symmetries to be set by hand. This
work contributes a system that discovers symmetries for different
environments and agents. The method consists of two steps: (i) an
exploratory state that compiles state values as the agent spans
the state and (ii) the identification of existing symmetries and
their domain in the world.

I. INTRODUCTION

How much can a single experience be leveraged in learning?
This has been an important question in the field of deep
learning. But in particular, even more so in the sample complex
world of deep reinforcement learning where optimizing an
agent can take hundreds of thousands or millions of steps
[1]. Sample efficiency is particularly important with physical
agents like robots where gathering interactions is even more
costly.

Recently, works like [2]–[4] have all studied ways in
which to use symmetry to speed up learning; however, their
approaches assumed known a priori knowledge about these
symmetries. In [2], given a transformation type, the method
builds a basis of matrices to populate the layers of a neural net-
work and lead to a weighted combination of basis components
that can be trained. In [3], a priori SE(2) transformations are
used to build an equivariant Q-network architecture. In [5]
rotational symmetries are used to data augment experiences
from pick-and-place actions to speed up learning.

We propose an algorithm to discover symmetries across
various environments and dimensions1. When such symmetries
are discovered, they can later be used during training (either
via data augmentation [1] or the conversion of neural network
layers into equivariant systems [2]–[4], [6] to transform expe-
rienced trajectories allowing for increased sample efficiency.
The algorithm works in a two step process: the acquisition of
observations and symmetrical transformations identification.
Observations that span the space are gathered in a buffer.
Each of those observations is then transformed by a given
transformation. Each transformation is given a confidence
measure according to number of equivalences found between
its transformed observation and the contents of the buffer.

† School of Engineering, Lipscomb University, Nashville, TN 37215.
Corresponding author: juan.rojas@lipscomb.edu

1That is, worlds that contain different agents, workspaces, and bounds on
state and action spaces. For example, one world could contain a 2D mobile
agent, another could contain a 3D manipulator

II. GROUP THEORY

The use of groups to encode symmetries is motivated by a
need for a structure which exhibits the following properties:
(i) the composition of symmetric operations is itself a sym-
metric operation such that the structure which contains the
symmetries must be closed; (ii) there must be an action which
represents taking no action; (iii) for every symmetric action,
there must be a way to get back to the state in which no action
has been taken. These properties of symmetry cleanly lead to
the definition of a group.

More formally, a group is defined as a set G together with
some operation ∗ such that the following four properties hold:
(i) Closure: for some a ∈ G and b ∈ G, a ∗ b ∈ G; (ii)
Associativity: for some a ∈ G, b ∈ G, and c ∈ G, a∗ (b∗c) =
(a ∗ b) ∗ c; (iii) Identity: there exists e ∈ G which satisfies
a ∗ e = a for all a ∈ G; and (iv) Inverse: for all a ∈ G there
exists an inverse a−1 which satisfies the equation a ∗ a−1 = e
where e is the identity.

A subgroup of some group (G, ∗) is a subset of G which
is itself a group. For a group G and some subgroup H , a left
coset is defined as gH for g ∈ G. For some group G and
some set X which is acted on by G, an orbit of x ∈ X is
defined as {gx|g ∈ G}.

We then can define the set of n × n orthogonal matrices
as a group under the operation of matrix multiplication. This
group is called O(n). This group contains a subgroup whose
members are the orthogonal matrices of determinant 1. This
group is called SO(n).

III. SYMMETRY DISCOVERY

We propose an algorithm to discover symmetries in an ob-
servation space. The algorithm works in a two step process: the
acquisition of observations and symmetrical transformations
identification.

A. Exploratory Data Acquisition

Before identifying symmetries, one must be aware of the
range of plausible observations in a given environment. Such
range is not usually obvious or trivial. The range of plausible
observations is affected by both the constraints of the agent
and the environment. A particular agent might be composed by
a series of connected links, all of which have a limited range
of motion. The environment might have a support surface (i.e.
a table, the floor, etc.) that determines not only the space over
which the agent can function but also the entities with which
it interacts (i.e. objects in the world). There might also be
other difficulties in collecting observation data, as in the case
of obstructing elements in the environment. Put simply, the
range of plausible observations needs to be extracted either

juan.rojas@lipscomb.edu

deliberately from the start or progressively as an agent interacts
with the environment.

Upon extracting observations we face the question of how to
store such observations. Should each and every observation be
stored? For small discrete spaces that might be a consideration,
however, not so for the majority of cases. We hold that a
well crafted subset can be collected and stored in a buffer
instead. To enable symmetry discovery with this data, it must
have a wide coverage of observations. Narrowly concentrated
observations will fail to find many symmetries. Consider an
environment with actions Left, Right, where Left steps an agent
in −x direction and Right steps the agent in the +x direction
by a finite distance x. If all stored observations originated from
the Right action, the reflection defined by the bisecting axis
would not be found2.

In discussing “wide-coverage”, we need to specify the
coverage of what. Not all dimensions in an observation space
consist of the same data type. Observation vectors are often
multimodal and include diverse information like position,
velocity, force, etc. We currently limit our buffer to spatial
(Cartesian) point information ascribed to an agent’s end-
effector (e.g. the inverted pendulum’s tip, a robot’s finger, etc).

To have a buffer with a wide coverage we implement
an exploration actor that attempts to uniformly cover the
agent’s continuous action space. The generic exploration actor
can be applied to any environment if the number of action
dimensions and lower and upper action value bounds are
known. The actor partitions each dimension in an action space
from the lower bound to the upper bound via a predetermined
number of discrete steps and stores them in a buffer. Then
the actor traverses through the the possible combinations of
admissible action movements in each dimension via a nested
loop. Namely, given a set of action dimensions (e.g. ax, ay ,
az), loop through the possible range of actions [aimin

, aimax
].

Every time the environment is reset, the actor selects the
succeeding action command in the buffer. On time steps at
which the environment was not reset, it randomly picks any
of the one of the permutations.

B. Symmetry Identification

Using the data collected by the exploration actor, we then
seek to identify valid environment-wide symmetry transfor-
mations in the observation space. We first generate a set of
candidate transformations that span the space from a lower
bound to an upper bound. Subsequently, to test if the pro-
vided transformation belongs to the built-in symmetry of the
environment, we sample a random observation from the buffer,
apply the transformation and check if the result exists within
our data buffer. We repeat a finite number of times and return
the number of success as a confidence measure.

More concretely, let D be the set of all valid observations,
and f(x) be some transformation function where x ∈ Rn

2In this work, we assume we care to find symmetries across the entire
workspace. This may not always be desirable. It is possible, given some
information, we only care about some subspace of the environment. Though,
we do not consider this case in our work.

and f : Rn → Rn. Then a symmetrical transformation is one
that meets the requirement f(x ∈ D),∀x ∈ D. Intuitively, this
means the transformation does not leave the set; it maps valid
observations to valid observations. In practice, we do not deal
directly with D because of its size. When the state space is
continuous, it would be infinite. Instead we work with a buffer
B, where B ⊂ D. As stated earlier, it is important that the
buffer B is uniformly distributed over the observation set D.
Note that the incomplete nature of the buffer implies that if
a transformation maps an observation outside the buffer, we
cannot conclude that the transformation is not symmetrical. It
is certainly possible the transformed observation is a valid
observation but not present in the buffer. To this end, a
confidence value is then generated based on the number of
successful observation pairs that a transformation yielded.
The method keeps all transformations that have a confidence
greater than an empirically set parameter #∆ ∈ [0, 1]. In
theory, the maximum confidence number would be attained
according to: (range − increment)/range. For example, if
you consider a 90 degree rotation across a span of 180 degrees,
observations that lied in the first quadrant, could only find
matches in the second quadrant, attaining at most success for
half of the observations.

Equivalence checks across vector observations use an error
tolerance ϵ. The value of ϵ has a significant impact on what
transformations are identified as symmetrical. We elaborate
further in Sec. IV-B.

The procedure described above was implemented as the
testTransformation function. The function takes any trans-
formation as input and outputs a confidence value. It applies
the transformation symmetry num test number of times on
randomly selected observations from B. We opted for random
selection of observations to cover different regions of the data
without having to transform every observation in the buffer.
We test rotations at discrete steps. The step size is an adjustable
parameter called angle increment. In 3D problems, each
axis is tested separately. Reflections over axes are tested next.
Any transformation with a confidence value less than or equal
to ∆ are discarded. The pseudo-code is presented below:

IV. EXPERIMENTS AND RESULTS

A. Experiments

For our experiments, we need to specify 3 aspects: (i)
the types of transformations we seek to discover in our
environments, (ii) the step size of the transformations we test,
and (iii) the confidence threshold to accept a symmetry. In
this section, we also introduce our environments, the action
bounds used during the exploratory phase,

1) Transformations: In this work, we consider transforma-
tions that belong to the orthogonal group (O(2), O(3)) and
include rotations and reflections. We used a right handed
coordinate system for every environment. Rotations are tested
at discrete steps with distance angle increment between
them. We tested with angle increment equal to 0.034 ra-
dians which is approximately 2 degrees. In 3D environments,
rotation is attempted over every axis. In 2D environments,

Algorithm Symmetry Discovery

1: function TESTTRANSFORMATION (T)
2: works← 0
3: for iteration = 1, 2, . . . symmetry num test do
4: a← a random state from the buffer
5: b← transformation of a by T
6: if b in buffer then
7: works← works+ 1
8: end if
9: end for

10: return works/symmetry num test
11: end function
12: Fill buffer with exploration actor
13: angle← 0
14: while angle < 2π do
15: T ← transformation that is rotation by angle
16: T.confidence← testTransformation(T)
17: angle← angle+ angle increment
18: end while
19: In 3D, repeat while ∀ rotational axes
20: call testTransformation(T) for x, y, z reflections
21: remove transformation with T.confidence <= ∆

reflection over a given axis is identified as equivalence between
the other value and its negative. For the y-axis, the reflection
of (x, y) would be (−x, y). In 3D environments, reflection is
thought of as a mirroring over a plane. Mathematically, this is
done by negating the dimension that is not utilized in forming
the plane. The reflection of the point (x, y, z) over the plane
xoz would be (x,−y, z). As for the confidence threshold ∆
we used a value of 0.5 since all kept transformation work on
more observations than they do not.

2) Environments: In this work we used three Mujoco envi-
ronments: Inverted Pendulum, Reacher, and FetchPush [7], [8]
as shown in Fig. 1. All environments have continuous action
and observation spaces. The Inverted Pendulum moves a cart
in 2D and balances an attached pole. The Reacher is a two
degrees of freedom (DoF) robot arm that is rewarded when
its fingertip touches the goal. Note the z position is always
0 and is thus a 2D problem. The FetchPush consists of a 7
DoF robot manipulator that tries to push a block to a target
position in 3D space.

As for observations abstractions, the Inverted Pendulum
consists of an (x, y) point where x is the position of the
cart and y is the cosine of the vertical angle of the pole.
The Reacher, uses the fingertip position, which was derived
by subtracting the fingertip distance to target from the target
position; and for the FetchPush environment, given the gripper
does not have an origin at (0, 0, 0), we reset the gripper
position to the origin to facilitate reflection and rotational
transformations.

B. Results

In this section we quantify and illustrate identified sym-
metries. The algorithm identified symmetries in all three

environment with properly set parameters.
For the Inverted Pendulum we set the buffer to 1000 ob-

servations, symmetry num test to 100, and epsilon to 0.1.
The algorithm finds reflections over the y-axis as symmetrical.
Additionally, it finds rotations with angles near 0 or 2π as
these are trivial identity rotations. These results are displayed
in Fig. 2. We repeated the experiment with a 20-fold larger
error tolerance ϵ = 2 and kept all other parameters the
same. This tolerance yielded reflections over the x- and y-
axis as symmetrical as well as continuous rotation symmetry.
This result is incorrect since there is no x-axis reflection nor
continuous rotation in this environment.

For the Reacher we set the buffer to 1000 observations,
symmetry num test to 100, and an ϵ of 0.1. Here, the
algorithm identifies infinite rotational symmetries and orthog-
onal reflections as shown in Fig. 3. The method identifies
the continuous range of the rotational symmetries inherent in
the environment. As for reflections, we only consider what
we define as orthogonal reflections; those that align with
the vertical and horizontal axes. Otherwise, we would deal
with an infinite count of them. We ran a another trial with a
tolerance a tenth of the original ϵ = 0.01 and keeping all other
parameters the same.Here, the method finds no symmetrical
transformations other than the identity rotation.

For the more complex FetchPush environment, we in-
creased the observations in the buffer to 5000 and
symmetry num test to 250. We still used an ϵ of 0.1.
The results for this run are shown in Fig. 4 and 5. Noise
in the exploration actor and simulator means the algorithm
can report different symmetries for the same parameters. For
these parameters, the algorithm can reliably find x- and y-axis
reflection symmetries but did not reliably find any continuous
rotational symmetry. However, most of the tested rotations
over the z-axis are symmetrical. There are only a few rotations
by an angle over the z-axis that do not reach the confidence
threshold. If the buffer size and symmetry num test are
increased to 7500 and 500 respectively, the algorithm can
reliably report continuous rotations over the z-axis since all
tested z-axis rotations were found to be symmetrical. The
algorithm still finds the previously mentioned reflection sym-
metries for the new parameters. Reflection over the z-axis
does not exist in this in this environment due to obstruction
by the table. Our algorithm correctly does not label z-axis
reflection as a symmetry when using either of the previously
described parameters. If the algorithm is run with a lower ϵ of
0.01, the algorithm does not find any symmetries other than
the identity rotation for both values for the buffer size and
symmetry num test.

One of the most important parameters used by the algorithm
is ϵ which controls the margin of error allowed for determining
equality. We saw that if ϵ was set to a large enough value, the
algorithm will report all transformations are symmetrical even
if they are not. On the other end, too small of an ϵ means
that no symmetries will be found due to the continuous nature
of the environment. Careful tuning of ϵ is vital in obtaining
correct results. Ablation studies for all our experimentation

Fig. 1: Three Mujoco environments: (i) Inverted Pendulum, (ii) Reacher, and (iii) Fetch-Push.

−0.2 −0.1 0 0.1 0.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

X Axis

Y
Ax

is

x

z y

Fig. 2: Inverted Pendulum results with 1000 observations and
ϵ = 0.1. Blue points are observations. The green line is
the discovered reflectional axis. The circle represents valid
rotations. Green and red points indicate angles over which
you have symmetrical and non symmetrical rotations.

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

X Axis

Y
Ax

is

x

z y

Fig. 3: Reacher environment results with 1000 observations,
symmetry num test = 100 and ϵ = 0.1. Notation explained
in Fig. 2

can be found at the following link.

V. DISCUSSION

This method is as an initial step towards allowing systems to
dynamically learn the natural symmetry of their environments
as they interact with them. Such symmetries can then be used
during policy learning steps to speed up optimization.

The method’s ability to determine the correct symmetries
with proper parameter setting has been demonstrated, though
applying these learned symmetries to learning has yet to be
demonstrated. Additionally, the algorithm provides a frame-
work for testing if any transformation is symmetrical. Our
formulation allows for easy expansion and testing of new
arbitrary transformations.

The need for empirically set values is a major limitation of
our work as discussed in Sec. IV-B. The improper setting of
the parameters can lead to incorrect symmetries. Additionally,

x

z y

Fig. 4: Visualization of reflection symmetries from the Fetch-
Push environment. A blue point represents one of 5000 ob-
servations. The green planes represent the found symmetry by
reflecting over the corresponding axis.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

x

y

Fig. 5: Visualizations of rotation symmetry in the FetchPush
environment. Each circle represents one rotation axis. They
are ordered left to right: x, y, z. A green point means that a
rotation over that axis by that angle is symmetrical. A red
point means it is not symmetrical.

the current work struggles to identify symmetries at the edges
of the stored observations given that transformations there lead
to observations outside the range.

In the near future, we hope to consider additional transfor-
mations like translations and reflection across arbitrary axes
or planes; include theoretical guarantees of finding existing
symmetries, and applying it to robots in real-time to incremen-
tally discover symmetries in probabilistic manners. Finally, we
would like to extend the approach to image space.

VI. CONCLUSION

This paper presented a symmetry discover algorithm that
worked across environments and dimensions. The algorithm
discovers reflectional axes or planes and rotational ranges in
2D and 3D showing its ability to generalize across settings.
Such algorithm has important potential to learn symmetries on
the go and increase learning efficiency in DRL settings.

https://drive.google.com/file/d/1LEbKRQzb8FwZXs3GNQ5ebFSRAeNNXkbq/view?usp=sharing

REFERENCES

[1] Y. Lin, J. Huang, M. Zimmer, Y. Guan, J. Rojas, and P. Weng, “Invariant
transform experience replay: Data augmentation for deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, pp. 6615–6622,
2020. [Online]. Available: https://ieeexplore.ieee.org/document/9158366/

[2] E. van der Pol, D. E. Worrall, H. van Hoof, F. A. Oliehoek, and
M. Welling, “MDP homomorphic networks: Group symmetries in rein-
forcement learning,” Advances in Neural Information Processing Systems,
vol. 2020-Decem, pp. 4199–4210, 2020.

[3] H. Huang, D. Wang, R. Walters, and R. Platt, “Equivariant Transporter
Network,” Robotics: Science and Systems Foundation, 2 2022. [Online].
Available: https://arxiv.org/abs/2202.09400v5

[4] D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant Q Learning
in Spatial Action Spaces,” pp. 1713–1723, 1 2021. [Online]. Available:
http://arxiv.org/abs/2110.15443

[5] D. Wang, R. Walters, and R. Platt, “SO(2)-EQUIVARIANT
REINFORCEMENT LEARNING.” [Online]. Available: https:
//pointw.github.io/equi rl page/.

[6] A. Zhou, T. Knowles, and C. Finn, “Meta-Learning Symmetries by
Reparameterization,” arXiv, 2020. [Online]. Available: http://arxiv.org/
abs/2007.02933

[7] Gymnasium, “Mujoco Environments,” 2023. [Online]. Available: https:
//gymnasium.farama.org/

[8] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” 2012, pp. 5026–5033.

https://ieeexplore.ieee.org/document/9158366/
https://arxiv.org/abs/2202.09400v5
http://arxiv.org/abs/2110.15443
https://pointw.github.io/equi_rl_page/.
https://pointw.github.io/equi_rl_page/.
http://arxiv.org/abs/2007.02933
http://arxiv.org/abs/2007.02933
https://gymnasium.farama.org/
https://gymnasium.farama.org/

	Introduction
	Group Theory
	Symmetry Discovery
	Exploratory Data Acquisition
	Symmetry Identification

	Experiments and Results
	Experiments
	Transformations
	Environments

	Results

	Discussion
	Conclusion
	References

