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Abstract— In order for humans and robots to collaborate
effectively, robots must be able to communicate their objectives
to human partners. Understanding the robot’s objective enables
human partners to coordinate with the robot on a shared
approach to the task. Prior work in machine teaching has
examined how robots can communicate reward functions to
human learners in a single-agent environment. We consider the
problem of teaching a human partner a joint reward function,
which captures how both human and robot should contribute to
the task. This reward, which is known only to the robot, is joint
over human and robot actions, and encompasses constraints
over how the human and robot should contribute to a task.
By adapting existing machine teaching frameworks for our
collaborative domain, we seek to provide a minimal number
of demonstrations such that a human can learn the rewards.
We test the ability of human partners to learn an optimal
collaborative policy based on demonstrations from the robot,
and evaluate the effect of learning on team performance in a
collaborative task. We additionally compare the effectiveness
of using demonstrations at different levels of complexity to
explicitly providing numeric rewards values on human learning.
Results of our preliminary user study validate demonstrations
as a method for teaching humans collaborative policies on both
performance and comprehension levels.

I. INTRODUCTION

As AI agents become increasingly involved in the daily
lives of humans [1], it is more important than ever for
humans and robots to share task responsibilities [2]. Our
ability to fluently collaborate with robots is contingent on our
ability to understand their objectives and decision-making.
People unfamiliar with robots may not know how they should
work with them, nor understand how a particular robot is
designed to help them. This leads to questions such as, ”How
do I collaborate with this robot? Which tasks are designated
for it versus me?” Consequently, it is important for the
robot to communicate a collaborative approach–how human
partners can or should collaborate with it. In this work,
we examine how robots can communicate a joint reward
function and in turn, a joint policy, to human partners through
demonstrations.

A new partnership between a human and robot agent
requires a period of adjustment for each collaborator to
understand the capabilities of the other. We examine a
paradigm where the robot partner is an expert on the optimal
policy for a collaborative task. When a new human partner
is paired with this robot, there must be some way for the
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robot to impart its expertise and constraints during the initial
acclimation period. One way to facilitate this knowledge is
through demonstration.

We propose an approach that extends the capabilities of
machine teaching for humans in collaborative tasks. By
generating a set of demonstrations, human partners will be
able to learn an optimal policy. We explore how environment
complexity affects the demonstrations selected and shown
to the human learner. We designed and propose a user
study that compares how demonstrations at different levels of
complexity affect human learning and task performance. We
additionally compare the efficacy of demonstration and ex-
plicit rewards. We conducted a preliminary user study which
suggests that easier demonstrations are effective in teaching
humans over harder demonstrations and over explicit reward
values.

II. RELATED WORK

1) Machine Teaching for Humans: Machine Teaching for
Humans is an approach to forming demonstrations featuring
an agent so that a human learner can understand a robot’s
policy [3]. The framework generates a minimal set of demon-
strations to teach a robot learner the optimal reward function
for a task. It modifies the Set Cover Optimal Machine Teach-
ing (SCOT) algorithm [4], which was originally devised to
form demonstrations for robot learners, to be more palatable
for human learners.

Lee [3] extends this work by shifting the paradigm
to generating demonstrations for human learners. In these
demonstrations, the human observes a single agent and infers
its policy based on how the rewards influence the agent’s
behavior in the environment. This work proposes a general
machine teaching framework for collaborative tasks where
rewards are joint across the human and robot. Therefore,
the generated demonstrations feature joint actions that are
distinct and independently chosen by each agent based on
their own understanding of the environment.

2) Value Alignment: Value alignment is the problem of
finding and maintaining a shared objective between a human-
robot team [5]. Prior work in value alignment among agents
exists [6], but doesn’t address the complexity of humans
who project additional mental states into their decision-
making [5]. The value-alignment problem is therefore bi-
directional, requiring each agent to behave as a teacher and
learner simultaneously throughout an interaction. Techniques
in inverse reinforcement learning have been used to learn
agent reward functions. In Bayesian inverse reinforcement
learning, the goal is to learn a maximum reward from an
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Fig. 1: Teaching humans collaborative policies is broken into 3 stages: (1)
The robot becomes an expert on a joint reward function for the task. (2) The
robot teaches the human the optimal policy with demonstrations generated
from the reward function. (3) The human learner is evaluated based on their
performance of the collaborative task.demonstration

expert [7]. This work seeks to make progress on the value
alignment problem by producing a method for humans to
infer the optimal policy on a collaborative task by inferring
rewards through the robot expert’s demonstrations.

III. PRELIMINARIES

1) Task Domain: We developed a 3D simulated environ-
ment for a pick and place task where agents are tasked
together to clean up objects from a table. At every timestep,
each agent simultaneously chooses an item (a duck or lego)
to pick up and place in the tray. Each agent’s strategy is
based on picking up items that are most rewarding for the
team as a whole. The team’s objective is to clean up all the
items within the given time steps while also maximizing the
overall reward.

2) Strategies: The clean-up task is performed optimally
when each agent understands the role of their partner. Agents
are free to pick up any item or choose no item. Instances
where agents must choose “no item” should allow the other
partner with more reward to gain for that item to pick
it up. Suboptimal scenarios occur when two agents reach
for the same item. This results in a failed pickup that
forces the team to fully incur the step cost. This scenario
represents disfluency between the agents and the human
partner’s misunderstanding of the rewards assigned to the
object.

IV. DEMONSTRATION GENERATION

Our proposed interaction for teaching human collaborative
task policies occurs in three stages. Prior to interaction, the
robot expert develops demonstrations through the method
described below. Then, the demonstrations are shown to the
human, and finally, the robot and human perform the task,
where the human applies their knowledge learned. (Figure
1).

A. Joint Machine Teaching for Humans

Markov Game Formulation. We model the
environment as a two-player Markov game M =
⟨S,Ah,Ar, T , R, γ,S0⟩. S is the set of states, fully
observable to both human and robot. The human and
robot each have an action space Ah and Ar, though in
our task we consider these action spaces to be the same.
T : S × Ah × Ar × S → [0, 1] is the transition function,
which is dependent on the joint action of human and

robot, which act simultaneously in the game. γ is the
discount factor, and S0 is the initial state distribution.
The reward function R : S × Ah × Ar → R is linear.
R = w∗Tϕ(s, ah, ar, s′) is represented as a weighted linear
combination of state and joint action features. w∗ is known
only to the robot, and must be taught to the human through
demonstration. We assume the human is aware of the full
Markov game aside from the reward function weights w∗.
π∗ : S → Ah × Ar is the optimal joint policy with respect
to the reward weights w∗ in M.

For generating demonstrations, we aim to show the min-
imum set of demonstrations such that w∗ is taught to the
human. Each demonstration in the set will show the team
performing actions according to an optimal policy in a
particular Markov game instance, which we term a context.
We define a context, c, as a particular instance of a Markov
game Mc, with a fixed R,Ah,Ar, and γ, but a unique
S, T , and S0. The set of all possible contexts, C, is a group
of Markov games instances that share R,Ah,Ar, and γ,
but differ in S, T , and S0. In our collaborative decluttering
domain, there is one demonstration of π∗ in a context c,
which is just the full, noiseless rollout of π∗.

Machine Teaching for Policies. Our objective is to select
the minimum set of informative demonstrations to teach the
joint policy π∗. We use the machine teaching for inverse
reinforcement learning framework [4] to determine the best
set of initial states from which we roll out the optimal
policy which will completely teach the human the reward
function R. We aim to select the set of demonstrations D
that minimizes the following optimization problem:

argminD∈C |D| s.t. Loss(w∗, ŵ) ≤ ϵ, ŵ = IRL(D) (1)

Since there is one demonstration of π∗ in a context c,
demonstration set D is equivalently as set of contexts
{c(0), c(1), ..., c(|D|)} selected from C. The policy loss of an
estimated weight vector ŵ compared with the true weight
vector w∗ is defined:

Loss(w∗, ŵ) = w∗T (µπ∗ − µπ̂) (2)

where π∗ is the optimal policy under w∗ and π̂ is the
optimal policy under ŵ. This loss represents the difference
in expected return between the robot’s optimal policy and
expected return from the policy learned by the human
observer, when evaluated under the true reward weights w∗T .
µ
(s,a)
π = E[

∑∞
t=0 γ

tϕ(st)|π, s0 = s, a0 = a] is the vector
of expected features counts that result from taking action
a in state s and following π from then on. The Set Cover
Optimal Teaching algorithm from [4] gives us the optimal set
of demonstrations and contexts which comprise the robot’s
set of demonstrations which teach ŵ.

B. Trading Off Context Complexity vs. Informativeness

As demonstrations are presented to the human, there may
be certain kinds of demonstrations that are more effective
than others. We observe a Pareto frontier (Figure 2) as we
tradeoff between complexity of contexts in the demonstra-
tions and number of demonstrations needed to teach the



Fig. 2: This Pareto front shows an inverse relationship between number
of objects permitted per type and the length of the teaching set. For our
purposes, fewer objects per object type result in teaching sets with higher
complexity.

optimal policy. Complexity is defined by the number of
objects of each type we allow to be present in the environ-
ment. Operationally defined, when we increase complexity,
allowing for more objects of each type to be present in the
environment, we increase |C| the size of the set of contexts
over which we search for the minimum set of demonstrations.
For example, when we allow for at most 4 items of each
type to be present in a context c (Complexity=4), the space
of possible contexts includes all contexts where at most 4
objects of each type are present, up to 3 objects of each
type, up to 2 objects of each type, and up to 1 object of
each type. This is necessarily more than the Complexity=2
and Complexity=3 cases.

The number of demonstrations is determined by the SCOT
algorithm termination condition, where the optimal policy is
taught and no additional demonstration offers more informa-
tion. The Pareto frontier is a set of solutions that represents
the best trade-off between all the objective functions. Every
point along the Pareto frontier is optimal with respect to
being able to teach the optimal policy using SCOT.

Observing that there are levels of complexity in the sets
of demonstrations we can potentially show to the human
partner, we aim to test whether these levels of complexity
affect the human’s ability to learn. Our user study thus aims
to answer this question of whether the complexity affects
the human’s ability to learn from joint demonstrations, and
whether these joint demonstrations are more effective than
explicitly giving joint reward functions.

V. USER STUDY DESIGN

We conducted a piloted study with 12 participants on the
interactive table cleanup task to evaluate the effectiveness
of teaching humans through demonstration. We also eval-
uated which complexity level for demonstrations are best
for humans to learn from. In each experimental condition,
participants were then instructed to maximize the team
reward by choosing an optimal action that would jointly
collaborate with their robot partner’s choice.

Each participant was first assigned some form of expla-
nation provided by the robot partner based on one of four

Fig. 3: The study design answers two questions: (1) How does the visual
demonstration complexity influence human learning? and (2) How do visual
demonstrations compare to explicit reward values in enabling humans to
comprehend rewards?

between-subjects conditions. The Pareto optimal between
length of the teaching set and the number of objects per
object type allowed for demonstrations to be categorized by
context complexity. Those complexity levels, easy, medium,
and hard, were three of the conditions that the participant
could be assigned to learn from. Video demonstration sets
presented the entirety of an optimal cleanup task from start
to finish featuring joint actions by a robot agent and an
optimal human partner. Before performing the task them-
selves, participants viewed demonstrations to gather implicit
information about each agent’s rewards.

The fourth experimental condition was in the form of ex-
plicit reward explanations where participants were provided
with a score sheet of agent-specific object rewards and the
step cost for actions which they could reference as they chose
actions for the task (See Figure 6). This serves as a baseline
against the effectiveness of learning from demonstrations
alone.

Additionally, four within-subjects reward configurations
were used to generate demonstrations and served as the basis
for interactive games. This required participants to under-
stand various combinations of constraints for each game and

Fig. 4: Easy demonstrations proved the best for providing enough informa-
tion for human partners to apply directly to the collaborative task. Errors
bars represent standard error.



Fig. 5: Participants with explicit reward explanations were the least accurate
when selecting the strategy used by the team

respond with the appropriate action selection. After viewing
the demonstration set for a given reward configuration,
participants were then asked to interactively collaborate with
the robot partner in a simulated table cleanup task.

A. Hypotheses

Collaborative interactions with demonstration-based robot
teachers will guide users to more optimal task performance,
supporting the following hypotheses:
H1: Participants will collaborate more optimally after learn-

ing from demonstrations than explicit reward explana-
tions.

H2: Participants who see the easy demonstrations will per-
form the task better than those who see medium and
hard demonstrations.

H3: Participants will have higher confidence in robotic
agents as teachers when given demonstrations rather
than explicit reward explanations.

B. Measures

Several objective and subjective measures were used to
support the aforementioned hypotheses. For the subjective
measures, we gathered alignment through surveying to draw
experiential data about the human-robot collaboration. The
set of questions related to collaborative fluency borrow from
Hoffman’s established set [8] and additionally include new
questions for the following metrics (fluency in Fig. 6).
We measured task performance by the overall team score
achieved by the team after cleaning objects within the limited
number of timesteps. We additionally measured participants
confidence in their learning (learning), and affinity towards
the robot’s communication style (communication). We mea-
sured whether participants felt they were able to apply their
knowledge learned from the demonstrations (application).
Users asked to explicitly identify the strategy taught by the
robot from a multiple choice list. This gives indication of
the conscious comprehension by the user on the constraints
for each agent, represented in Fig. 5.

VI. RESULTS

We gathered preliminary results via pilot study from 12
in-person participants. Participant age ranged from 18 to

Fig. 6: Easy demonstrations out-perform all other conditions in subjective
measures

21 years old (M = 22.67, SD = 2.66). Additionally, about
66% of participants self-reported as male and 33% reported
themselves as female. The four experimental conditions
(easy, medium, and hard demonstrations and explicit reward
explanations) distributed evenly among the participants at
random.

To observe generalized learning behavior, all participants
additionally interacted with four environment configurations
requiring them to infer different interaction strategies. The
overall team reward from each game was compared in a
ratio to the known optimal score. This is how we define
performance. Participants were assigned one of the four
experimental conditions and data from the interactive task
as well as the survey response were analyzed. An average of
the performance across all participants for each experimental
condition was taken. For subjective measures, the responses
for each query in the subjective category was aggregated and
averages were also taken across users.

Data from the pilot study indicates a subjective preference
for easy demonstrations along with the most optimal task
performance among all the experimental groups. Participants
with explicit reward explanations performed the worst on
conscious indication of the strategy (See Figure 5) being
employed. Easy demonstration sets, then, seem to satisfy
the capability of improving conscious awareness of the task
constraints and improving task performance.

VII. DISCUSSION

We have presented a method for robots to teach human
partners collaborative policies by providing demonstrations
of varying complexity levels to evaluate the human’s learn-
ing. We ran a pilot study featuring 12 participants exploring
the effectiveness of policy teaching via demonstration and
evaluating task performance in comparison to explicit reward
explanations. Initial results indicate humans perform well
with demonstrations and primarily favor demonstrations at
the easy level over all other explanation groups. Future
work will explore more closely how the complexity of the
environment influences task performance in demonstration
groups versus explicit reward groups.
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