
Safe Nonlinear Model Predictive Control
using a Learned Approximate Control-Invariant Set

Asia La Rocca1, Gianni Lunardi1, Matteo Saveriano1 and Andrea Del Prete1

Abstract— In recent years, advanced model-based and data-
driven control methods are unlocking the potential of complex
robotics systems, and we can expect this trend to continue at an
exponential rate in the near future. However, ensuring safety
with these advanced control methods remains a challenge. A
well-known tool to make controllers (either Model Predictive
Controllers or Reinforcement Learning policies) safe, is the so-
called safe set (a.k.a. control-invariant set). Unfortunately, for
nonlinear systems, such a set cannot be exactly computed in
general. Numerical algorithms exist for computing approximate
safe sets, but classic theoretic control methods break down if
the safe set is not exact. This extended abstract presents our
recent efforts to address this issue. We present a novel Model
Predictive Control scheme that can guarantee safety using a
conservative approximation of a safe set. This method relies
on a safe task-abortion strategy that drives the system to an
equilibrium state when a risk of future constraint violation is
detected. Moreover, it replaces the classic terminal constraint
with a novel receding constraint, which leads to a higher
number of completed tasks, while retaining safety guarantees.
We evaluated our approach on a simulated robot manipulator,
empirically demonstrating its superiority to two classic MPC
schemes.

I. INTRODUCTION

Ensuring safety is crucial in all robotics applications. How-
ever, this is more and more difficult with the recently increas-
ing complexity of control methods and robotic platforms.
Indeed, recent data-driven approaches, often relying on Re-
inforcement Learning (RL) algorithms, typically produce
black-box policies that are inherently hard to certify as safe.
Moreover, even model-based control methods for constrained
nonlinear systems in practice struggle to guarantee safety,
which consists in recursive constraint satisfaction (a.k.a.
recursive feasibility). This is because the classic approach to
guarantee safety, both for Model Predictive Control (MPC)
and for Quadratic-Programming-based control methods, re-
lies on the assumption of knowing a so-called safe set
(a.k.a. control-invariant set) [?], or a Control Barrier Function
(CBF) [1]. However, exactly computing safe sets (or CBFs)
for nonlinear systems is not feasible in general. Therefore,
practitioners must rely on numerical methods to compute
approximate versions of such sets (or functions) [2]–[7].
Unfortunately, safety guarantees are lost if the used safe set
is not exact.

In this abstract, we present a novel MPC scheme that
ensures safety even when using an approximate safe set,
as long as this set is conservative (i.e., it is a subset of a

1The authors are with the Industrial Engineering Department,
University of Trento, Via Sommarive 11, 38123, Trento, Italy.
{name.surname}@unitn.it

safe set). We compared our approach with two classic MPC
schemes: one without terminal constraints (but with a longer
horizon), and one using the approximate safe set to constrain
the terminal state. Our method could successfully complete
the task in more tests than the others, while also being able
to safely abort the task in all the cases when the task could
not be accomplished. While this work focuses on model-
based control methods, our approach can be applied also to
produce a so-called safety filter, to make any black-box RL
policy safe.

II. PRELIMINARIES

A. Notation

• N denotes the set of natural numbers;
• {xi}N0 denotes a discrete-time trajectory given by the

sequence (x0, . . . , xN);
• xi|k denotes the state at time step k+ i predicted when

solving the MPC problem at time step k;

B. Problem statement

Let us consider a discrete-time dynamical system with
state and control constraints:

xi+1 = f(xi, ui), x ∈ X , u ∈ U . (1)

Our goal is to design a control algorithm to ensure safety
(i.e., constraint satisfaction), while preserving performance
(i.e., cost minimization) as much as possible. Let us define S
as the set containing all the equilibrium states of our system:

S = {x ∈ X | ∃u ∈ U : x = f(x, u)}. (2)

To achieve our goal, we rely on the Infinite-Time Backward-
Reachable Set of S, which we denote V . Mathematically,
it is defined as the subset of X starting from which it is
possible to reach S in finite time:

V ≜ {x0 ∈ X | ∃{ui}k0 , k ∈ N : xk+1 ∈ S, xi ∈ X ,

ui ∈ U ,∀ i = 0, . . . , k}.
(3)

As all backward reachable sets of equilibrium states, the set
V is a control-invariant set. This means that, starting from
inside V , it is possible to remain inside V indefinitely. If
we knew V we could use it to construct a safe controller.
However, we cannot reasonably assume to know it in general.

Assumption 1. We know a conservative approximation of
the set V:

V̂ ⊆ V (4)

V̂ is not control invariant in general. We also know an upper
bound on the number of time steps needed to safely drive the
system to an equilibrium from a state in V̂ , which we refer
to as N̄ .

As discussed above, numerical methods exists to compute
approximations of V [8], which can be made conservative by
an appropriate choice of a safety margin. Now we discuss
different approaches to exploit V̂ in an MPC formulation to
try to achieve safety.

C. Model Predictive Control and Recursive Feasibility

Let us consider the following discrete-time definition of
an MPC problem:

minimize
{x},{u}

N−1∑
i=0

ℓi(xi, ui) + ℓN (xN)

subject to x0 = xinit

xi+1 = f(xi, ui) i = 0 . . . N − 1

xi ∈ X , ui ∈ U i = 0 . . . N − 1

xN ∈ XN ,

(5)

where ℓ(·) is the running cost, ℓN (·) is the terminal cost,
xinit is the current state measurement, and XN is the terminal
set.

Even though MPC is one of the most suited frameworks
for controlling constrained systems, ensuring safety (i.e.,
constraint satisfaction) remains challenging when the dynam-
ics and/or the constraints are nonlinear. The most common
approach to ensure safety is based on the concept of recursive
feasibility (RF), which guarantees that, under the assumption
of no disturbances/modeling errors, if an MPC problem is
feasible at the first loop, it will remain feasible forever.

RF is guaranteed if the MPC horizon N is sufficiently long
(see Section 8.2 of [?]). However, in general we cannot know
how long N should be. Moreover, even if N were known, it
may be too long to result in acceptable computation times.

Alternatively, RF can be guaranteed by using the terminal
set XN to constrain the final state inside a control-invariant
set (see Section II-D for details). While theoretically elegant,
the practical issue with this approach is that safe sets are
extremely challenging (if not impossible) to compute for
arbitrary nonlinear systems/constraints.

Other approaches to RF exist that rely on the optimality
properties of the solution and the stability of the closed loop
(e.g., Section 8.3 of [?]). However, these approaches rely on
controllability assumptions and other conditions on running
and terminal costs. Therefore, they are not applicable to
arbitrary cost formulations as the methods discussed in this
abstract.

D. Terminal Constraint

As discussed above, a common way to ensure recursive
feasibility in MPC is to constrain the final state inside a
control-invariant set, such as V . Unfortunately, we do not

know V , but only V̂ , which is not control invariant in general.
Therefore, constraining the final state of our MPC:

xN ∈ V̂ (6)

does not ensure recursive feasibility. This means that our
MPC problem could become unfeasible, and at that point
classic MPC theory does not tell us what to do. A common
strategy to deal with unfeasibility is to relax the terminal
constraint with a slack variable, which is heavily penalized
in the cost function. In this way, when the terminal constraint
cannot be satisfied, we can still get a solution that allows us
to keep controlling the system, in the hope that eventually the
terminal constraint is satisfied again. However, this approach
does not ensure safety, nor recursive feasibility, because the
soft constraint allows the state to leave V , which eventually
can lead to constraint violations.

III. SAFE MODEL PREDICTIVE CONTROL

This section describes our novel Safe MPC scheme.

A. Safe Task Abortion

Our key idea to ensure safety relies on Assumption 1 and
on the following two assumptions.

Assumption 2. We have access to two computational units,
which we refer to as unit A and unit B.

Assumption 3. We can solve the following OCP for any
xinit ∈ V̂ , in at most N − 1 time steps:

minimize
{x},{u}

N̄−1∑
i=0

ℓi(xi, ui) + ℓN̄ (xN̄)

subject to x0 = xinit

xi+1 = f(xi, ui) i = 0 . . . N̄ − 1

xi ∈ X , ui ∈ U i = 0 . . . N̄ − 1

xN̄ = xN̄−1,

(7)

The choice of the cost function is irrelevant, and can simply
be used to help the solver to converge faster.

Now we can describe our strategy to safely abort the task
in case we detect a risk of constraint violation. Let us assume
that we are using a classic MPC formulation with terminal
constraint xN ∈ V̂ , and that at iteration k our problem
becomes unfeasible. In this situation, we can follow these
steps to safely abort the task:

1) unit A uses the MPC solution computed at iteration
k − 1 to reach the terminal state xN |k−1 ∈ V̂;

2) in parallel, unit B solves OCP (7), using xN |k−1 as
initial state;

3) after reaching xN |k−1, we follow the solution of
OCP (7) to safely reach an equilibrium state.

This strategy allows us to reach a safe equilibrium state,
where a basic stabilizing controller can be used to maintain
the system still. This is possible thanks to the fact that, by
Assumption 1, we know that OCP (7) is always feasible
because from any state in V̂ we can reach an equilibrium
state in at most N̄ time steps. Assumption 3 is instead needed

Time

Step

MPC

Loop

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Hard Receding Constraint Soft Terminal Constraint

x0|0

x1|0
x2|0

x3|0 x4|0
x0|1

x0|2

x0|3
x0|4

Fig. 1. Example of Receding-Constraint MPC with N = 4. After the MPC
loop 3, the receding constraint slides forward because x4|3 ∈ V̂ .

to make sure that we solve the OCP before reaching xN |k.
This is critical because it relies on the MPC horizon N to
be sufficiently long to allow for enough computation time to
solve the OCP. However, if this turns out to be challenging,
learning-based warm-start techniques could be used to speed-
up the computation of this OCP [9], [10].

B. Receding Constraint

Instead of relying exclusively on the final state to ensure
safety, we could exploit the fact that, as long as at least one
state xj ∈ V̂ (with 1 ≤ j ≤ N), we know that x1 ∈ V
because from x1 we can reach xj .

Based on this insight, we suggest to adapt online the time
step at which we constrain the state in V̂ . For instance, if at
the MPC loop k − 1 we had xj|k−1 ∈ V̂ , at the loop k we
know that it is possible to have xj−1|k ∈ V̂ (assuming no
disturbances and modeling errors), therefore we can impose
this constraint in a hard way. This is sufficient to ensure
safety for j loops, during which this receding constraint
would slide backward along the horizon. However, once the
receding constraint reaches time step 0, we can no longer rely
on it to ensure safety. Therefore, we suggest to maintain also
a soft constraint for the terminal state to be in V̂ and, after
solving the MPC at loop k−1, to check whether xN |k−1 ∈ V̂;
if that is the case, at loop k we can move the receding
constraint forward on xN−1|k, which would ensure safety for
other N − 1 loops. A simple example is depicted in Fig. 1.

This approach is better than the classic terminal-constraint
approach because i) it ensures safety (if combined with
the task abortion strategy, as described in the following
subsection), and ii) it also ensures recursive feasibility for
some MPC loops (i.e. j MPC loops, whenever a predicted
state xj is in V̂).

C. Safe Task Abortion with Receding Constraint

We discuss now how to combine the safe task abortion
strategy with the receding constraint formulation. The issue

is that the receding constraint formulation can become un-
feasible when the receding constraint has reached time step
0. However, at that point, we have only one time step to
solve OCP (7), which may not be enough.

A possible way to reduce computation time is to pre-
compute a good warm-start for OCP (7), before the receding
constraint reaches time step 0. While we do not know in
which state the system will be at that time, we can use the
trajectory predicted by the MPC as a guess. For instance,
suppose that we computed a trajectory with xN−1|k ∈ V̂ , but
xN |k /∈ V̂ . Then, we can start planning a back-up trajectory
solving (7) with xinit = xN−1|k; by Assumption 3, this
computation terminates within N − 1 time steps. At this
point we have two possibilities. Case 1: during the next
N − 1 loops the MPC cannot find any state in V̂ after time
step k + N − 1, therefore we must start the task abortion
procedure. In this case we can use the pre-computed back-
up trajectory to warm-start OCP (7) from the current state
xN−1+k, which is probably near to xN−1|k. Case 2: at loop
r (with k < r < k + N), the MPC finds a trajectory with
xN |r ∈ V̂; then we can interrupt the current computation of
OCP (7), and restart the whole procedure.

If this warm-start is not enough to solve OCP (7) in one
time step, we could modify the receding-constraint formu-
lation to ensure that the pre-computed back-up trajectory
starts exactly at the state of the system when the task
abortion is initiated. To achieve this, we must modify the
receding constraint from xj|k ∈ V̂ to the more conservative
xj|k = xj+1|k−1. In other words, we constrain the predicted
state in V not to change across the MPC loops. This is bound
to deteriorate the performance, but it is still better than the
standard terminal-constraint formulation.

IV. RESULTS

A. Overview

In this section we compare three MPC formulations:
• Naive MPC is a classic formulation without any con-

straint besides the classic state and control sets;
• Terminal MPC is a classic formulation constraining the

terminal state in V̂;
• Receding MPC is the novel formulation discussed in

Section III-B, where we used soft constraints for both
the receding constraint (penalty weight of 107) and the
terminal constraint (penalty weight of 104).

We have considered a simulated planar double pendulum,
thus nx = 4, nu = 2. We have used CASADI [11] for the
symbolic computation of the dynamics, costs and constraints,
and ACADOS [12] to solve the OCPs and integrate the
dynamics. The OCP is formulated as a tracking problem
with respect to a static configuration, purposely chosen to
be near the joint limits, to check the capability of constraint
satisfaction of the tested controllers. The used running cost is
simply a least-squares function, penalizing deviations from
the desired state and penalizing control efforts.

We have computed a conservative approximation of V
using the method described in [8] and then introducing a

TABLE I
NUMBER OF TIMES EACH CONTROLLER COULD COMPLETE THE TASK,

SAFELY ABORT IT, OR VIOLATED A CONSTRAINT.

MPC COMPLETED ABORTED FAILED

NAIVE 32 0 68
TERMINAL 63 28 9
RECEDING 95 5 0

TABLE II
MEAN NUMBER OF SOLVER FAILURES, AND MEAN TRACKING COST.

MPC SOLVER FAILURES COST (·104)

NAIVE 22.7 6.343

TERMINAL 17.2 6.350

RECEDING 7.5 6.372

safety margin by reducing by 5% the maximum velocity
computed by the neural network encoding the set.

We have carried out 100 simulations, starting from random
joint positions q0 and zero joint velocities, with time step
dt = 5ms. The horizon of the naive MPC has been fixed
to N = 32, such that each MPC iteration can be computed
within 4ms (assuming 1ms is needed for other operations).
We have used a shorter horizon N = 28 for the other
approaches, to account for additional computation time due
to the extra constraints. For the safe abortion OCP we used
a horizon N̄ = 40. We consider the task completed if the
controller can run for 100 iterations (i.e., 500ms) without
violating any constraint.

B. Discussion of the results

Table I shows how many times each approach i) completed
the task successfully, or ii) safely aborted the task (see
Section III-A), or iii) failed the task by violating a constraint.
Overall, Receding MPC performed better than Terminal
MPC, which performed better than Naive MPC. For the
unaccomplished tasks, Terminal and Receding MPC could
safely abort the task solving (7) in most cases. Remarkably,
Receding MPC never violated any constraint. The reason
why the safe task abortion was not always successful is likely
that the solver could not find a solution, even if one existed.

We have evaluated the tracking performance through the
total cost along the trajectory. Table II reports the mean
total cost, considering only the completed tasks. The cost
for Receding and Terminal MPC is slightly higher (< 1%)

TABLE III
COMPARISON BETWEEN NAIVE MPC AND THE OTHER FORMULATIONS

IN TERMS OF NUMBER OF TIME STEPS BEFORE CONSTRAINT VIOLATION.

MPC BETTER EQUAL WORSE

TERMINAL 38 26 36

RECEDING 67 29 4

than for Naive MPC, due to the additional constraints, which
make the solver more conservative. SOLVER FAILURES refers
to the mean number of times that the MPC solver failed to
find a solution during a task, which is the highest for naive
MPC and, to a lesser extend, for Terminal MPC.

Finally, Table III reports a direct comparison between
each controller and Naive MPC. Each row specifies how
many times, for a given task, an MPC formulation performed
BETTER, EQUAL or WORSE than Naive MPC. A BETTER
performance is a task where constraint violation occurred
later than for Naive MPC (or never). Overall, Receding MPC
outperformed the other approaches.

V. CONCLUSIONS

We presented an approach for safe nonlinear MPC, based
on a conservative approximation of a control-invariant set.
Our results show the benefits of the presented approach
in terms of ability to avoid constraint violations in Monte
Carlo simulations with a robot manipulator. Future work will
explore scaling this approach to larger systems, and real-time
implementation on hardware.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE Conference on Decision and Control, 2014, pp. 6271–6278.

[2] B. Djeridane and J. Lygeros, “Neural approximation of pde solutions:
An application to reachability computations,” in IEEE Conference on
Decision and Control, 2006, pp. 3034–3039.

[3] P.-A. Coquelin, S. Martin, and R. Munos, “A dynamic programming
approach to viability problems,” in IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning,
2007, pp. 178–184.

[4] F. Jiang, G. Chou, M. Chen, and C. J. Tomlin, “Using
neural networks to compute approximate and guaranteed feasible
hamilton-jacobi-bellman pde solutions,” 2016. [Online]. Available:
https://www.arxiv.org/abs/1611.03158

[5] V. Rubies-Royo and C. Tomlin, “Recursive Regression with Neural
Networks: Approximating the HJI PDE Solution,” in International
Conference on Learning Representations, 2017.

[6] K. C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and
Liveness Guarantees through Reach-Avoid Reinforcement Learning,”
Robotics: Science and Systems, 2021.

[7] C. Dawson, S. Gao, and C. Fan, “Safe Control With Learned Cer-
tificates : A Survey of Neural Lyapunov , Barrier , and Contraction
Methods for Robotics and Control,” IEEE Transactions on Robotics,
vol. 39, no. 3, pp. 1749–1767, 2023.

[8] A. La Rocca, M. Saveriano, and A. Del Prete, “VBOC: Learning the
Viability Boundary of a Robot Manipulator using Optimal Control,”
IEEE Robotics and Automation Letters, 2023.

[9] N. Mansard, A. Del Prete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a Memory of Motion to Efficiently Warm-Start a Nonlinear
Predictive Controller,” in IEEE International Conference on Robotics
and Automation, 2018, pp. 2986–2993.

[10] G. Grandesso, E. Alboni, G. P. Papini, P. M. Wensing, and A. Del
Prete, “CACTO: Continuous Actor-Critic With Trajectory Optimiza-
tion - Towards Global Optimality,” IEEE Robotics and Automation
Letters, vol. 8, no. 6, pp. 3318–3325, 2023.

[11] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[12] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“Acados: a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, vol. 14, pp. 147–
183, 2019.

https://www.arxiv.org/abs/1611.03158

	Introduction
	PRELIMINARIES
	Notation
	Problem statement
	Model Predictive Control and Recursive Feasibility
	Terminal Constraint

	Safe Model Predictive Control
	Safe Task Abortion
	Receding Constraint
	Safe Task Abortion with Receding Constraint

	Results
	Overview
	Discussion of the results

	Conclusions
	References

