
Increasing Critic Robustness with Degenerate Distribution Mixtures in
Discrete Action Reinforcement Learning

Samuel Blad1,2, Martin Längkvist1,2, and Amy Loutfi1,2

Abstract— Reinforcement Learning (RL) commonly employs
critics to assist in training the actor, often using deterministic
or categorical action-value approximations. While continuous
action spaces have their merits, they tend to suffer from expres-
siveness constraints and introduce limitations when calculating
entropy. We propose a novel method, Degenerate Distribution
Mixture (DDM), designed to combine the strengths of determin-
istic policy gradient (DPG) style gradients and discrete action
distributions. Unlike existing techniques, DDM trains the critic
on a mixture of the policy distribution and the degenerate
distribution of sampled actions. This allows the critic to guide
the actor efficiently towards actions that maximize the expected
return while meeting entropy regularization constraints. Initial
experiments suggest that our DDM approach has the potential
for faster training times and may offer improved stability com-
pared to existing techniques like Gumbel noise-based methods.
While these findings are preliminary, they hint at the promise
of more computationally efficient and robust RL methods that
could be developed using our approach across diverse action
spaces.

I. INTRODUCTION

In Reinforcement Learning, training an actor frequently
involves a critic to backpropagate reward signals through
the Bellman equation, associating individual state-action
transitions with future rewards. Pioneering works, like RE-
INFORCE [1], employed critics that produce a single value
for each state-action pair to instruct the actor.

However, performing an exhaustive sum over all actions
is expensive. As demonstrated in [2], the variance of the
value scales linearly with the sample vector’s dimensions.
In continuous action spaces, DPG-style algorithms [3] allow
the critic to provide a gradient across all action parameters,
leading to enhanced performance in settings like DDPG [4],
or SAC [5]. Additionally, a compact parametrization can
be defined, e.g., a Gaussian action distribution simply by
its mean and variance vectors. This retains the semantic
continuity in the action space, unlike the segmented nature
of categorically subdividing the action space. However, one
can utilize convolutional layers over the bins or employ a
spatial autoencoder to enhance the continuity in categorical
distributions as well, as illustrated in [6].

Nevertheless, continuous action spaces present challenges.
Basic parametrizations, such as a uni-modal Gaussian dis-
tribution, may lack expressiveness. Actions, typically hav-
ing bounded values, don’t always fit into infinite-domain
distributions. While transformations like the tanh function
can squash distributions, they introduce complications. For

1 Center for Applied Autonomous Sensor Systems, Örebro University,
Örebro, Sweden

2firstname.lastname@oru.se

instance, an augmented variance might result in reduced
entropy, as depicted in Fig. 1. Additionally, the entropy term
of a continuous distribution can cause numerical instability
due to its potentially infinite range, unlike the bounded nature
of the entropy in a categorical distribution.

Fig. 1. When a tanh function is applied to samples from a normal
distribution, for high values, there’s an observed decrease in entropy as
the standard deviation increases.

Prior solutions that attempt to integrate the advantages
of DPG-style gradients with a categorical action distribution
face challenges. For instance, adapting the SAC framework
to use distribution parameters as actions allows for entropy
regularization but complicates the critic’s role. The critic,
which should primarily assess the impact of individual
actions on returns, finds it difficult to do so when the actor’s
policy converges to high entropy distributions, like a uniform
policy. This issue compromises the critic’s ability to guide
the actor effectively.

In this paper, we introduce the Degenerate Distribution
Mixture (DDM) method to address this challenge. We lever-
age a hybrid approach where the critic is trained on a
mixture of the actor’s policy and the degenerate distribution
of sampled actions. This enables the critic to maintain a
nuanced representation that effectively steers the actor toward
an optimal policy.

Our work offers a potential middle ground by combining
DPG’s optimization efficiency in continuous action spaces
with the expressiveness of discrete actions. This synergy
may help circumvent computational bottlenecks and insta-
bility, commonly seen in discrete settings and the lack of
expressiveness in continuous ones. While our findings are
still preliminary, they suggest that our approach could pave
the way for more balanced and versatile RL methods.

II. DEGENERATE DISTRIBUTION MIXTURE (DDM)

In discrete action settings, a policy offers a categorical
distribution, denoted as π, contingent on a specific state s.



An action a is sampled from π to transition the environment
to its subsequent state.

Training a critic solely based on the pair (s, π) deprives
it of the ability to leverage insights about how the action
a influences the environment’s transition, leading to a noisy
feedback loop for the critic. On the other hand, one could
contemplate training the critic on the degenerate distribu-
tion πa, which consistently results in action a, echoing
the strategy employed by REINFORCE. Nonetheless, this
approach creates a hurdle: the critic never receives training
on the diverse, non-degenerate vectors provided by the actor.
Consequently, when such vectors are input into the critic
following the DPG paradigm, the output values become
unreliable.

For the critic to efficiently guide the actor, it must be adept
at approximating expected values for vectors spanning the
continuum between π and πa. Such a configuration ensures
that the gradients emanating from the critic naturally shep-
herd the actor toward the degenerate distribution perceived
to generate the maximal return, all the while maintaining
entropy regularization constraints.

To address this, the DDM approach trains the critic on a
vector πc situated linearly between π and πa. The specific
position of πc on this linear path is governed by a proba-
bilistic distribution.

In this work, we evaluate three distinct variants of the
Beta distribution. The Beta distribution parameterized by
β(0.1, 0.1) exhibits pronounced density proximate to π
(representing the current position) and πa (representing the
intended destination), while maintaining a nearly uniform,
albeit low, density for intermediary values. We also consider
the uniform distribution β(1, 1), which offers a constant
density across all policy values. Lastly, we study a one-sided
variant, β(0.1, 1), which provides a high density in proximity
to the current policy π and gradually decays to its lowest
density at πa.

Algorithm 1 delineates the procedural flow of the sampling
process as per the DDM methodology.

Algorithm 1 DDM sampling
1: Input: Policy distribution π, mixing distribution D
2: a← Sample action from π

3: Create πa such that πa(a
′) =

{
1 if a′ = a

0 otherwise
4: δ ← Sample weight from D
5: πc ← (1− δ) · π + δ · πa

6: Output: Environment action a, Critic action πc

Given a sample from the replay buffer (s, a, r, s′, d) where
r is the reward from this transition, s′ is the next state, and
d is the termination flag, the loss LC for the critic C and
loss LA for the actor A are:

q(r, s′, d) = r + γ(1− d)(C(s′, A(s′)) + αH(A(s′)))

LC(s, a, r, s
′, d) = (C(s, πc)− q(r, s′, d))2

LA(s) = −(C(s,A(s)) + αH(A(s)))

Here, πc is derived from a as described Algorithm 1, γ
denotes the discount factor, H(·) denotes the entropy of a
distribution, and α is the weight of the entropy regulariza-
tion. We also incorporate double q-learning [7] and target
networks with Polyak averaging [8] to stabilize the training
process of the critic. It’s worth noting that, during the training
phase of the actor, its output π is directed to the critic without
undergoing any blend with the degenerate distribution.

The critic remains on-policy as actions a are always
sampled from π and the target value for the critic q(r, s′, d)
is computed on A(s′) directly. However, the critic is now
additionally tasked with considering the implications of a
hypothetical lower-entropy policy that would also yield the
same current action a. In this way, the critic evaluates not
only the action under the actor’s current policy but also under
conditions where the action could have been chosen by a
more deterministic policy.

III. RELATED WORK

A common approach when dealing with discrete action
spaces is to train the actor with the REINFORCE style
gradients. However, other approaches are also used which
enable DPG style gradients. In [9], Gumbel noise is added
to the logits from the actor. The action is then the argmax
of the result, however, the critic learns the softmax instead
of max. This procedure of action sampling has the same
distribution as directly sampling from softmax, as long as the
temperature of the softmax is 1. An outline of the Gumbel
Noise sampling process for comparison can be observed in
Algorithm 2.

Algorithm 2 Gumbel Noise sampling
1: Input: Policy distribution π
2: g ← Sample Gumbel noise
3: Compute new logits: l = log(π) + g
4: a← argmaxa′ l(a′)
5: πc ← softmax(l)
6: Output: Environment action a, Critic action πc

This approach shares various similarities with DDM. Both
methods produce discrete actions a sampled from the policy
distribution π. Neither train the critic on π but shift it through
some differentiable process with external noise to πc, either
with Gumbel noise or distribution D in combination with
the degenerate distribution πa. Depending on the entropy
of π, Gumbel noise will yield vectors πc closer to the
degenerate distribution πa or more evenly spread out across
the distribution domain. DDM will similarly yield πc close
πa or π depending on the mixing distribution D.

The key difference between Gumbel noise and DDM is
that Gumbel noise generates πc vectors in the sub-set of the
distribution domain where the closest degenerate distribution
vector is πa, whereas DDM generate πc on the line between
π and πa, which can happen anywhere in the domain. The
implication of this difference can be seen in Fig. 2, where
we notice that the critic will learn different functions. For



Fig. 2. The target return (i.e. the sampled action), denoted as
Red/Green/Blue, for various inputs to the critic of a 3 action categorical
distribution. Lower entropy distributions will have values towards the edges.
When using Gumbel noise, the critic is always trained on the result of the
argmax operation, when using DDM, the critic is trained on the expected
result of the distribution.

Gumbel noise, the critic is trained to be a separator function
between discrete actions, but using DDM the critic is trained
to learn the expected return of any distribution.

The critic guides the actor to the best action through
gradients. When using entropy regularization with a target
entropy value, the actor has to balance the desired entropy
with the value given by the critic, so it will attempt to settle
somewhere along the black circles as shown in Fig. 2.

When using Gumbel noise the actor has to balance by
averaging over multiple samples from the critic. When using
DDM, the critic will need to learn the balanced values of the
distribution through multiple samples. This transfers some of
the modelling complexity from the actor to the critic.

IV. PRELIMINARY EXPERIMENTS

To assess the efficacy of DDM, we focus our investigation
on three core research questions:

1) Will the inclusion of DDM outperform a critic that is
directly trained on the policy π?

2) How does the performance of DDM stand in relation
to existing algorithms like Gumbel noise and REIN-
FORCE within discrete action spaces?

3) In continuous action environments, how does DDM
measure up against SAC?

To validate our approach, we conducted experiments on
3 discrete action space environments [10]: Bipedal Walker
(Discrete), Lunar Lander, and Cartpole, and 3 continu-
ous action space environments [10] [11]: Bipedal Walker
(Continuous), Reacher, and Swimmer. For comparison, we
evaluated each environment using the same hyperparameters
on two different seeds. We display the average performance
per epoch for 2000 epochs. It’s worth noting that some
environments required more episodes to converge, such as
Swimmer, while others, like Cartpole, needed fewer. To
facilitate the use of DDM in continuous action environments,
we discretize each action space into predefined buckets. This
modification allows the policy to be modeled as a categorical
distribution for each action.

Fig. 3 illustrates improvements in policy quality afforded
by the integration of DDM. Without DDM, the algorithm
risks failing to converge to an optimal policy. Choosing the

Fig. 3. Overall return when training of a critic on distribution parameters,
with or without the inclusion of DDM, for various environments. In
most environments, all methods ultimately converge to the same result,
however for Bipedal Continuous not using DDM consistently achieves lower
return. DDM seems to also speed up the learning process except for some
environments where the inclusion of DDM slows down the learning process
for certain choices of parameters.

right distribution D appears to have a large impact on the
training time.

Fig. 4. Overall return of DDM, REINFORCE and Gumbel noise on
environments with discrete action spaces. All methods seem to converge
into the same results, but DDM is the fastest with certain parameters, and
REINFORCE the slowest.

Fig. 4 provides insights into DDM’s performance in dis-
crete action spaces. DDM demonstrates comparable perfor-
mance to Gumbel noise, with both algorithms significantly
outperforming REINFORCE. Notably, DDM exhibits faster
learning rates with certain parameters when compared to
Gumbel noise. Interestingly, DDM with the uniform distri-
bution has very similar convergence speed to Gumbel noise.

Fig. 5. Overall return of DDM and SAC on environments with continuous
action spaces. DDM achieves higher end return in Swimmer, and similar
for the other two. Different parametrizations of DDM achieve significantly
different training times.

Lastly, Fig. 5 analyzes DDM’s behavior in continuous
action spaces. For two methods DDM performs on par with



SAC, however for Swimmer it surpasses the performance of
SAC by a visible margin.

V. CONCLUDING REMARKS AND FUTURE WORK

In this study, we explored the potential advantages of
training a critic to map action distributions to their pre-
dicted outcomes, rather than individual actions. Our results,
although preliminary due to a limited number of experiments
and testing environments, suggest the potential for enhancing
the robustness of the critic by broadening its training scope
beyond the action distributions generated by the actor.

A potential drawback of DDM is the introduction of
a new hyperparameter: the distribution D. This addition
complicates the hyperparameter tuning process. Based on
our experiments, we believe the β(0.1, 1) distribution is a
prudent choice for D. Although alternative choices for D
might achieve faster convergence, the β(0.1, 1) distribution
concentrates its density around the current policy. This allows
the critic to effectively gauge values in the proximate vicinity
of the actor’s outputs, steering the actor appropriately.

Our experiments comparing REINFORCE, the use of
Gumbel noise, or SAC, with DDM, indicated faster con-
vergence for the latter in most cases, and increased return
in Swimmer, although these findings are not yet conclusive
since different hyperparameters for either method might have
great impact on training. Nevertheless, this opens up an
intriguing area for further investigation: the possible benefits
of training the critic on action distributions as opposed to
individual actions. We hypothesize that a smoother target
map for the critic could potentially increase the stability
of actor-critic methodologies by allowing a more expres-
sive critic to guide the actor with lower noise levels. The
plateau-like behavior observed with the critic in the Gumbel
noise scenario suggests that the gradients leading to optimal
distributions might be challenging for the actor to navigate
effectively.

An avenue for further research involves the selection of
the mixing distribution D. In our study, we utilized three
variations of the Beta distribution. While D might be per-
ceived as a tunable hyperparameter, the chosen distributions
notably influence the rate of convergence. This is evident in
environments like Lunar Lander, Reacher, and Swimmer. We
hypothesize that distributions with a high density around the
policy action are generally effective. In environments where
the optimal policy is more deterministic, a distribution that
also has a high density near the degenerate distribution, like
the uniform or β(0.1, 0.1), might be advantageous.

Given the simplicity of DDM, we encourage further ex-
perimentation with this approach in more complex environ-
ments, characterized by intricate value functions. Such stud-
ies would allow for a more robust performance evaluation
against existing methodologies.

REFERENCES

[1] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, pp.
229–256, 1992.

[2] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic
backpropagation and approximate inference in deep generative
models,” in Proceedings of the 31st International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
E. P. Xing and T. Jebara, Eds., vol. 32, no. 2. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 1278–1286. [Online]. Available:
https://proceedings.mlr.press/v32/rezende14.html

[3] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in International
conference on machine learning. Pmlr, 2014, pp. 387–395.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[6] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 512–519.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, Mar. 2016. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/10295

[8] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM journal on control and optimization,
vol. 30, no. 4, pp. 838–855, 1992.

[9] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[11] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.


