Diversity for Contingency: Learning Diverse Behaviors
for Efficient Adaptation and Transfer

Finn Rietz! and Johannes A. Stork!

Abstract— Discovering all useful solutions for a given task is
crucial for transferable RL agents, to account for changes in the
task or transition dynamics. This is not considered by classical
RL algorithms that are only concerned with finding the optimal
policy, given the current task and dynamics. We propose a
simple method for discovering all possible solutions of a given
task, to obtain an agent that performs well in the transfer
setting and adapts quickly to changes in the task or transition
dynamics. Our method iteratively learns a set of policies, while
each subsequent policy is constrained to yield a solution that
is unlikely under all previous policies. Unlike prior methods,
our approach does not require learning additional models for
novelty detection and avoids balancing task and novelty reward
signals, by directly incorporating the constraint into the action
selection and optimization steps.

I. INTRODUCTION

The standard reinforcement learning (RL) approach [1]
learns deterministic policies [2, 3, 4] for each task from
scratch, despite the notorious sample inefficiency of deep RL
algorithms. Instead, it would be preferable to learn transfer-
able and reusable policies and to adapt them to different
downstream tasks, with a fraction of data and compute
needed compared to learning from scratch. A promising ap-
proach for learning transferable RL agents is multi-objective
RL (MORL), where vectorized value functions can be shared
for many tasks [5, 6, 7]. A key requirement for learning such
transferable agents is to allow stochasticity and diversity in
the learned behavior [8, 9], as opposed to learning one overly
specific, deterministic policy. While MaxEnt RL [10, 11,
5] regularizes policies in an attempt to prevent them from
becoming overly specific, entropy-regularized (MO) RL is
not sufficient for inducing agents that learn all behaviors
that solve the given tasks, as can be seen in Fig. 1. To adapt
transferred agents efficiently it is important to discover all
useful behaviors, to account for possible contingencies, e.g.
parts of the middle pathway becoming blocked.

In this paper, we first review MaxEnt RL and methods that
learn diverse behaviors, either unsupervised or for a given
task. In Sec. III, we then propose a novel method for learning
policies that discover different solutions for the given task,
accounting for possible contingencies in transfer settings.

*This work was partially supported by the Wallenberg Al, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

1 Adaptive and Interpretable Learning Systems Lab, Center for Applied
Autonomous Sensor Systems, Orebro University, Sweden, Correspondence:
finn.rietzQoru.se

Start Goal SAC policy mmm Alternative paths |

10

| - I
6
—

=
=
[=
w
) -
2 -
0 ‘ y ‘ ‘ " ‘
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Env x
Fig. 1. Rollouts generated by a soft actor-critic agent. The behavior emits

local stochasticity but does not learn the alternative paths. Discovering all
possible solutions is crucial for transfer and adaptation.

II. RELATED WORK
A. Entropy regularization

A common approach to learning stochastic policies with
wide and smooth maxima is MaxEnt RL [11, 10]. Maximum
entropy (MaxEnt) RL augments the RL objective by adding
a term proportional to the policy’s entropy to the reward

J(ﬂ‘) :ZE(

t=1

st,ar) {fyt_lr(st,at) + a?—l(ﬂ(. | St)) , (D

where H(X) = E[—logp(z)] is Shannon’s entropy, thereby
punishing unnecessarily deterministic policies. The coeffi-
cient o balances the reward and the entropy terms, thereby
giving some control over the stochasticity in the learned pol-
icy, however, this coefficient is usually annealed towards zero
as training progresses. The primary algorithm for MaxEnt
RL is soft actor-critic (SAC) [12, 13], which learns an on-
policy, soft Q-function Q7 ;, for an univariate Gaussian actor
model. As can be seen in Fig. 1, SAC learns one behavior
(with local variations) but disregards other behaviors that
reach the goal. This has two reasons. Firstly, SAC’s actor
model is unimodal and thus can not capture all possible
modes, e.g. at the forks or intersections in the environment.
While some prior works [14, 11] can learn multi-modal,
entropy-regularized policies, multi-modality is not the key
requirement to learning diverse behaviors. The second and
more important reason why SAC disregards the other pos-
sible behaviors is that they are clearly sub-optimal, since
their trajectories are longer and have higher costs compared
to driving straight down the middle, from start to goal. RL

is fundamentally only concerned with finding one optimal
policy that solves the task, whether alternative solutions are
possible is not considered, although this is crucial for transfer
RL. In the next section, we review methods that, unlike
classical and MaxEnt RL, account for this and explicitly aim
to learn diverse behavior alongside the optimal policy.

B. Learning diverse behaviors

Popular approaches to learning diverse behaviors originate
from unsupervised option [15] discovery [16, 17]. One such
method is DIAYN [18], which discovers distinct behaviors
in an unsupervised manner and in the absence of a reward
function, by maximizing the mutual information between
behaviors and states [18]. Similarly, VALOR [19] discovers
distinct behaviors by maximizing the mutual information
between behaviors and context vectors [19], again without
access to a reward function. Both of these methods sub-
sequently use the learned behaviors as low-level options
in a hierarchical RL agent [15] to solve downstream tasks
efficiently.

In this paper, we instead assume access to the reward func-
tion from the beginning and wish to exploit this information
during learning, to discover alternative solutions to the given
task. In this setting, Zhang, Yu, and Turk [8] learn multiple
distinct policies for a task reward function 7y, by training
an autoencoder D = {Dy, ..., D, } for each available policy
1,..., T, On state sequences S; = (S¢,S¢41,S¢+k) Of that
policy and constructing a novelty reward function

Tnovel = — €XP (- U}’IDIIEI%HD(S) - S||2) (2)

Zhang, Yu, and Turk [8] then update the policy using the
angular bisector of the gradients on the expected novelty
and task reward, to ensure that both objectives are improved.
Similarly, Zhou et al. [20] learn distinct policies for a given
task by constraining policy search to trajectories 7 that
have low log-likelihood under already learned policies. To
promote diverse exploration, Zhou et al. [20] define, in
addition to the extrinsic task reward X, an intrinsic reward
function r™ based on learned, policy-specific reward models,
to boost diverse exploration:

J(6) =Eror, [w) S s A (- o) S] ,

J

€)]
where
k—1
¢(r) = [J IINLL(7, ;) > 4] (4)
j=1

is an indicator function on negative log-likelihood of trajec-
tories with threshold §. While [8, 20] exploit the task reward
signal for learning novel policies for the given task, these
methods either require learning additional novelty detectors,
have to balance multiple reward signals or rely on expensive
Monte Carlo updates. In the next section, we propose a
simple method for discovering alternative solutions for a
given task, while avoiding these shortcomings.

1.00

« Actions (squashed)

= = High-likelihood region

0.75 —340

0.50

—350
0.25

0.00

action y
Q-value

—360
—0.25

—0.50
—-370

—0.75

-1.00 —380

2100 -0.75 -0.50

-0.25 0.00 025 050 075 100
action x

Fig. 2. Q-function, action samples, and high-likelihood region of the agent
evaluated at the starting position. Novelty-constraints on policy-likelihood
prevent the agent from using actions that fall into the high-likelihood region
of prior policies.

III. LEARNING CONTINGENT POLICIES VIA NOVELTY
CONSTRAINTS

We propose an iteratively-constrained algorithm for learn-
ing alternative policies for the given task. In each iteration,
our algorithm learns a novel policy that attempts to solve the
task, while its solution space is constrained to behavior that
is unlikely under all previous policies for that task. Unlike
[8, 20], we refrain from changing the agent’s objective
by introducing auxiliary novelty rewards, our agent still
maximizes the expected task reward (subject to entropy-
regularization), as in Eq. (1). This avoids the trade-off be-
tween the (potentially conflicting) objectives of maximizing
return and behaving novel. Instead and intuitively, to learn
novel behavior, the agent should, in every state, only execute
actions that are unlikely under prior policies for the same
task. Following this intuition, we constraint policy search in
the i-th iteration (i.e. learning of the i-th policy) to a set II7_;
of policies, where policies in this set only select actions that
are unlikely under all prior policies:

*k
e

=max J(7') | 7" € TIT_;. (5)
To perform policy search as in Eq. 5, the agent needs a
way to sample actions from policies in II7_;. Implementing
Eq. (5) locally and state-based, action selection for policies
in II7_, is constrained:

a ~ m;(s)

6
subject to 7;(s,a) <e;,Vj{l,...,i—1}, ©

where ¢; are thresholds specifying the maximally allowed
action likelihood under policies from previous iterations
1,...,2—1. Fig. 2 provides a visualization of this constraint
and how it forbids actions that fall into the high-likelihood
region of prior policies. For each previous policy, we define

an indicator function

I7(s,a) = {(1)

that can be used to check whether an action a in state s
satisfies the novelty constraint in Eq. (6). With the novelty
constraint indicator functions we can project any policy into
T g

if m;(s,a),<¢;)

otherwise,

i—1

wi(als) xm(als) [[(s) (8)
j=1

Projecting policies into II7_; and sampling from 7; via

rejection sampling is thus straightforward, however, we still

require an algorithm for learning policies m; whose projec-

tions 7; perform well. We propose such a learning algorithm

in the next section.

A. Iterative novelty-constrained SAC

In the ¢-th iteration of the novelty-constrained setting, the
agent’s true (novelty-constrained) policy is 7;, to which we
only have access via rejection sampling. Thus, a learning
algorithm for 7; does not learn the agent’s true policy but a
proposal distribution for 7;. To account for this, we propose
an iterative and novelty-constrained version of SAC [12].
Learning a critic for 7;, the novelty-constrained policy, is
straightforward by ensuring that the expectation of future
actions in the TD-backup matches the (novelty-constrained)

actor:
1 A
JQ (01) -]Est,at,SH,lND 5 (Qel (Sta at) _Qei (Sta at)) 9 (9)

with
QGi(Shat) =7r(se,ar) +

Ea, \~i: [Qa, (St41,a41) — log(mi(ag1 | se41))],

(10)
where 6; refers to the target network parameter for 7;’s critic.
Similarly, the actor update must reflect the novelty constraint
and rejection sampling step as well. A key property of SAC
is that it updates the actor by minimizing the KL divergence
between the actor and the critic:

exp(Qe, (s, ~)))]

%%¢)==Ea~D[DKL(W¢C|Sﬂ Zo, (st)

= Es,~Da; s [log Te(ar | st) — Qo, (st at)]'
1D

In our case, we can still backpropagate through the critic,
however, only for action samples that have low likelihood
under previous policies and satisfy the novelty constraint (i.e.
for which H;;ll I7(s,a) = 1). Action samples that violate
the novelty constraint, i.e. are likely under previous policies,
should follow a different gradient because they would be
discarded by the rejection sampling step. Since these actions
are never executed, the critic never observes a reward signal
for those actions and hallucinates unreliable value estimates
whose gradients are not suited for learning the novelty-
constrained actor. Thus, to account for the rejection sampling
step and to encourage learning an actor that respects the

novelty constraint in Eq. (6), for actions that violate any of
the 2 — 1 constraints, we instead use the gradient of the KL
divergence between the current policy m; and the policies
whose constraints are violated. This leads to the following
actor update for the proposed, novelty-constrained SAC:

J7T(¢7,> = EstND,at~7r¢i
1 Dki(7:]|Q)

[H 17 (s,a) log mg, (ar | st) — Qo, (st ar) +

)

i—1
<1 — H H?(s,a)) log g, (a; | s¢) — logmy, (as | st) |-

j=1

Dxr (73| [75)

(12)

Thus, our iterative algorithm for learning contingent be-
haviors operates as follows. The first policy 7 is learned
unconstrained, using normal SAC [5], thus 7 is the optimal
soft policy for the given task. Once 7 has converged, our
algorithm proceeds with the learning of w5, which is novelty-
constrained w.r.t 71, meaning it has to solve the given task as
best as possible while respecting the constraint in Eq. (6). w2
is learned using the critic update in Eq. (9), the actor update
in Eq. (12) and relies on rejection sampling to generate
actions from 2. Once 79 has converged, 3 can be learned,
being novelty constrained w.r.t 71 and 7, and so on. We refer
to the additional policies 72, . . ., 7; as “contingency policies”
since they can be used in situations where the optimal policy
fails when transferred to a new task. In the next section, we
show how these additional policies can be used to recover
from unforeseen events in the transfer task.

IV. RECOVERING FROM UNFORESEEN EVENTS USING
CONTINGENCY POLICIES

When we transfer a pre-trained agent to a new task, the
agent can be exposed to situations that require it to deviate
from its behavior learned during pre-training. For example,
one such event might be when the middle path in Fig. 1
becomes blocked. Our proposed method accounts for this by
learning additional policies during pre-training, to be used in
and recover from such situations. To know when we should
use one of the contingency policies instead of the optimal
policy, we require a method for detecting contingencies,
where the optimal pre-trained policy behaves sub-optimally.
In the scope of this workshop paper, we simply rely on As,
i.e.changes in the state variable, to detect such events and
leave a more sophisticated method as future work. Given we
detect a contingency, we propose the following algorithm to
recover from such events: First, the agent backtracks for &
steps. Then, it runs the first contingency policy for m steps,
followed by rolling out the optimal policy. If the agent does
not finish the task this way, it repeats this process using all
available contingency policies and further backtracking steps.
This uninformed process does not require additional knowl-
edge, e.g. a model of environment transition dynamics, and
works well in practice, as seen in Figure 3. This is in contrast
to a baseline comparison in Fig. 4, where the agent executes

Start ® Backtrack CPs n*, fail
Goal n*, success = cont. m's
10
8 5
6 5
>
2 3
w
4 5
2 5
0

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Env x

Fig. 3. Rollouts generated by our backtracking algorithm. The algorithm at-
tempts to recover by rolling out the available contingency policies, followed
by rollouts of the optimal policy. If unsuccessful, the agent backtracks to the
next checkpoints and executes the contingency policies and optimal policy
again. This repeats until the task is finished successfully or all checkpoints
are exhausted.

Start Goal ® Backtrack CPs n”, fail + random]
10

3

6 N
> N
> K
< 3
w 4] :

5

0 " T " T " T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Env x

Fig. 4. Rollouts generated by our backtracking algorithm but with random
behavior instead of contingent recovery policies.

random actions to recover from the contingencies, instead
of the recovery policies learned with our proposed method.
There are a number of points that should be addressed in
future work. Instead of treating £ and m as hyperparameters,
it would be preferable to automatically identify states to
backtrack to and automatically decide for how long and
which contingency policy to execute. For the result in Fig. 3,
we manually selected values that were adequate for our
simple testing environment, which is not practical for more
sophisticated problems. We leave these points, as well as
more thorough experimentation and baseline comparisons,
as important future work.

REFERENCES

[1] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[2] John Schulman et al. “Proximal policy optimiza-
tion algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

John Schulman et al. “Trust region policy optimiza-
tion”. In: International conference on machine learn-
ing. PMLR. 2015, pp. 1889-1897.

Timothy P Lillicrap et al. “Continuous control with
deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2015).

Tuomas Haarnoja et al. “Composable deep reinforce-
ment learning for robotic manipulation”. In: 2018
IEEE international conference on robotics and au-
tomation (ICRA). IEEE. 2018, pp. 6244-6251.
Jonathan Hunt et al. “Composing entropic policies
using divergence correction”. In: International Confer-
ence on Machine Learning. PMLR. 2019, pp. 2911-
2920.

André Barreto et al. “Successor Features for Transfer
in Reinforcement Learning”. In: Proceedings of the
31st International Conference on Neural Information
Processing Systems. NIPS’17. 2017, pp. 4058-4068.
Yunbo Zhang, Wenhao Yu, and Greg Turk. “Learning
Novel Policies For Tasks”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA.
Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 7483-7492.

Karol Hausman et al. “Learning an embedding space
for transferable robot skills”. In: International Confer-
ence on Learning Representations. 2018.

Brian D Ziebart et al. “Maximum entropy inverse
reinforcement learning.” In: Aaai. Vol. 8. Chicago, IL,
USA. 2008, pp. 1433-1438.

Tuomas Haarnoja et al. “Reinforcement learning with
deep energy-based policies”. In: International confer-
ence on machine learning. PMLR. 2017, pp. 1352—
1361.

Tuomas Haarnoja et al. “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor”. In: International conference on
machine learning. PMLR. 2018, pp. 1861-1870.
Tuomas Haarnoja et al. “Soft actor-critic al-
gorithms and applications”. In: arXiv preprint
arXiv:1812.05905 (2018).

Yunhao Tang and Shipra Agrawal. “Implicit pol-
icy for reinforcement learning”. In: arXiv preprint
arXiv:1806.06798 (2018).

Richard S Sutton, Doina Precup, and Satinder Singh.
“Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning”. In:
Artificial intelligence 112.1-2 (1999), pp. 181-211.
Pierre-Luc Bacon, Jean Harb, and Doina Precup.
“The option-critic architecture”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 31. 1.
2017.

Roy Fox et al. “Multi-level discovery of deep options”.
In: arXiv preprint arXiv:1703.08294 (2017).
Benjamin Eysenbach et al. “Diversity is All You
Need: Learning Skills without a Reward Function”.
In: 7th International Conference on Learning Repre-

[19]

[20]

sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Joshua Achiam et al. “Variational Option Discovery
Algorithms”. In: CoRR abs/1807.10299 (2018). arXiv:
1807.10299.

Zihan Zhou et al. “Continuously Discovering Novel
Strategies via Reward-Switching Policy Optimiza-
tion”. In: The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

