
CACTO-SL: Using Sobolev Learning to improve
Continuous Actor-Critic with Trajectory Optimization

Elisa Alboni1, Gianluigi Grandesso1, Gastone P. Rosati Papini1, Justin Carpentier2, and Andrea Del Prete 1

Abstract— Trajectory Optimization (TO) and Reinforcement
Learning (RL) are two powerful and complementary tools to
solve optimal control problems. On the one hand, TO can
efficiently compute locally-optimal solutions, but it tends to
get stuck in local minima if the problem is highly not convex.
On the other hand, RL is less sensitive to non-convexity, but
it requires a much higher computational effort. Recently, we
have proposed CACTO (Continuous Actor-Critic with Trajec-
tory Optimization), and algorithm that uses TO to guide the
exploration of an actor-critic RL algorithm. In turns, the policy
encoded by the actor is used to warm-start TO, closing the loop
between TO and RL. In this work, we present an extension of
CACTO exploiting the idea of Sobolev learning. To make the
training of the critic network faster and more data efficient,
we enrich it with the gradient of the Value function, computed
via a backward pass of the Differential Dynamic Programming
algorithm. Our preliminary results show that the new algorithm
is more efficient than the original CACTO, both in terms of
computation time and of data points, while also providing more
consistent results across runs with different random seeds.

I. INTRODUCTION

Robotic control challenges have long been addressed
through Trajectory Optimization (TO). The high-level de-
sired task is encoded in the cost function of a constrained
Optimal Control Problem (OCP), which is minimised by
acting on the OCP decision variables, the trajectories of
state and control. When tackling complex problems, the
OCP may feature a highly non-convex cost function and/or
highly nonlinear dynamics. Therefore, gradient-based solvers
frequently encounter local minima and are unable to find the
globally optimal solution.

With the emergence of deep Reinforcement Learning (RL)
and its application to the continuous domain, this machine
learning tool is applied more and more widely to robot
control problems showing impressive results on continuous
state and control spaces [1], [2], [3], [4]. RL algorithms
are less prone to converge to local minima due to their
exploratory nature. Yet, there are still several challenges
related to the application of RL to robot control, such as
the necessity for extensive exploration.

As a potential solution to overcome the limitations of RL
and TO, we have presented CACTO [5]. CACTO iteratively
leverages the explorative nature of RL to initialize TO to
escape local minima, while exploiting TO to guide the
RL exploration. Thanks to the interplay of TO and RL,

This work was supported by PRIN project DOCEAT (CUP n.
E63C22000410001).

1 Dept. of Industrial Engineering, University of Trento, Italy
[name.surname]@unitn.it

2 INRIA, Paris, France justin.carpentier@inria.fr

(a) Scheme of the original CACTO formulation

(b) Scheme of CACTO with Sobolev Learning

Fig. 1: Comparison between the schematics of the original
CACTO formulation and the CACTO formulation enhanced
by Sobolev Learning.

CACTO’s policy provides TO with initial guesses that allow
it to obtain better trajectories than with other initialization
techniques. While the use of TO demonstrated to efficiently
accelerate the algorithm convergence, the computational bur-
den associated with solving TO episodes has posed some
limitations. In particular, as system complexity increases,
this issue becomes more relevant, hindering the scalability
of the algorithm. The ability of TO to produce the Value
function derivatives with limited computational cost presents
an opportunity to enhance the algorithm’s efficiency by
increasing the information extracted from each TO problem.
By leveraging Sobolev Learning, the gradient information
can be incorporated in the training, enhancing the perfor-
mance of the algorithm.

In this work, we incorporate Sobolev Learning in CACTO
to improve its efficacy and scalability. We empirically com-
pare the new algorithm with its original version, showing
a remarkable improvement in terms of both median perfor-

mance and its consistency across different runs.

II. METHOD

In [5] we presented CACTO, an algorithm that lever-
ages the complementarity between TO and RL for finding
quasi-optimal control policies through TO-guided RL policy
search. To increase its computational efficiency, we propose
to use Sobolev Learning (SL) for learning the Value function.
This method exploits the derivative information about the
target function in the training process, including an additional
term in the regression loss function that encourages the
derivatives of the network to match the target function’s
derivatives. We developed a new formulation of CACTO,
which involves the computation of the derivatives of the
Value function at the end of each episode and employs them
for training the critic. The schematics of the original CACTO
formulation and the CACTO-SL formulation are compared
in Fig. 1.

A. Original CACTO Formulation

This section presents the former formulation of
CACTO [5], an optimization algorithm designed to
address discrete-time optimal control problems with a finite
time horizon, characterized by the following structure:

minimize
X ,U

L(X ,U) =
T−1

∑
k=0

lk (xk,uk)+ lT (xT) (1a)

subject to xk+1 = fk(xk,uk) ∀k = 0 . . .T −1, (1b)
|uk| ≤ umax ∀k = 0 . . .T −1, (1c)
x0 = xinit (1d)

where the decision variables are the state and control se-
quences denoted as X = x0...T and U = u0...T−1, with xk ∈
Rn and uk ∈ Rm. The cost function L(·) is defined as the
sum of the running costs lk (xk,uk) and the terminal cost
lT (xT). The dynamics, control limits and initial conditions
are represented by (1b), (1c) and (1d).

The algorithm begins by solving N TO problems from
random initial states using a classic warm-starting technique,
such as random values, or the initial condition for the
state and zero for the control. Time is included as the last
component of the state vector to address the time dependency
of the Value function. Therefore, for each TO episode the
initial time is randomized as the other state elements. For
each problem, CACTO computes the partial L-step cost-to-
go associated to each optimal state, where L is the number
of lookahead steps used for Temporal Difference learning,
and stores them in a replay buffer along with the relative
transition (i.e. state, control, and state after L steps). Notice
that by setting L equal to T , the cost-to-go is computed with
Monte-Carlo. After N episodes the networks are updated. For
M times, a batch of transitions is sampled from the replay
buffer and used to update the neural networks of the critic
and the actor. In particular, the parameters of the critic are
updated so that the mean squared error between the critic’s
output and the reference cost-to-go is minimized, while the
parameters of the actor are updated according to the gradient

of the Q function. Finally, a rollout of the actor’s policy is
used to warm-start the TO problems in the next episodes,
closing the loop.

The algorithm has been proven to converge to the glob-
ally optimal solution in a discrete-space version, providing
valuable insights into its theoretical principles.

B. CACTO with Sobolev Learning

In order to exploit Sobolev Learning we need to provide
the agent with the derivative of the value function with
respect to the state: Vx. To analytically compute Vx, we
use the backward-pass of Differential Dynamic Programming
(DDP) [6], an optimal control method for unconstrained
nonlinear problems. At the end of each episode we compute
a local quadratic approximation of the action-value function
Q, about each state-action pair of the locally-optimal TO
trajectory (x̄i, ūi):

Qi(x̄i +δxi, ūi +δui)≈ Qi(x̄i, ūi)+
[
Q⊤

x,i Q⊤
u,i
][δxi

δui

]
+

1
2
[
δx⊤i δu⊤i

][Qxx,i Qxu,i
Qux,i Quu,i

][
δxi
δui

]
(2)

where Qx,Qu,Qxx,Qxu, and Quu are the partial first and
second derivatives of Q with respect to x and u. These
derivatives can be expressed as a function of the derivatives
of the cost l, the dynamics f , and the Value function V :

Qx,i ≜ lx,i + f⊤x Vx,i+1

Qu,i ≜ lu,i + f⊤u Vx,i+1

Qxx,i ≜ lxx,i + f⊤x Vxx,i+1 fx

Quu,i ≜ luu,i + f⊤u Vxx,i+1 fu

Qxu,i ≜ lxu,i + f⊤x Vxx,i+1 fu

(3)

We can then minimize the quadratic approximated action-
value function w.r.t. δui, obtaining the locally-optimal con-
trol δu∗i = −Q−1

uu,i(Qu,i +Qux,iδxi). We can then substitute
δu∗i in (2) to compute our quadratic approximation of Vi,
which gives us:

Vx,i = Qx,i −Qxu,iQ−1
uu,iQu,i

Vxx,i = Qxx,i −Qxu,iQ−1
uu,iQux,i

(4)

The algorithm is initialized with the value of V at time step
T , which corresponds to the terminal cost: Vx,T = lx,T , Vxx,T =
lxx,T . For more details on DDP, we refer the reader to [6].

The derivative of the Value function is then stored in the
replay buffer along with the associated transition. Finally,
during the update-phase, the critic parameters θV are updated
to approximate both the target values and their derivatives:

minimize
θV

1
S

S

∑
i=1

(
V̄i −V (xi|θV)

)2
+ kS

(
V̄x,i −Vx(xi|θV)

)2

(5a)

The relative importance is assigned to the two loss compo-
nent by mean of the coefficient kS.

Since the state in CACTO is augmented with the time
variable, we could also benefit from the derivative of V

w.r.t. t. However, since time in DDP is discrete, we cannot
compute it.

It is important to remark that our computation of Vx
corresponds to a Monte-Carlo approach rather than a TD
approach. Potentially, a customized backward-pass could be
designed to compute Vx with a TD approach, but we leave
this extension to future work.

C. Implementation Details

This section discusses some implementation details, with
a focus on the differences w.r.t. the original CACTO.

In CACTO-SL, for the critic network we have switched
from ReLU to ELU activation functions because they are
smooth and therefore help to match the Value’s gradient.

Sobolev learning leads to a more accurate approximation
of the Value’s gradient, used in the actor’s update. Therefore,
we could increase the learning rate for the actor’s training.

While CACTO relied on Pyomo [7] for implementing the
TO problems, CACTO-SL switched to CasADi [8], an open-
source Automatic Differentiation framework for numeric
optimization. By leveraging its symbolic framework and au-
tomatic differentiation capabilities, CasADi enables efficient
computation of the cost function’s derivatives, required for
implementing Sobolev Learning. Moreover, CasADi is com-
patible with Pinocchio [9], a versatile rigid body dynamics
library, which freed us from the burden to hand-code the
system dynamics. Each TO problem is transcribed using
collocation and then solved with the nonlinear optimization
solver IpOpt [10]. Finally, to speed up the code, we paral-
lelized the generation of the warm-start trajectories, the TO
problems, and the simulations.

III. RESULTS

We tested the proposed algorithm CACTO-SL, with the
goal to understand whether it performs better than the
original CACTO. We analyse one of the scenarios presented
in [5]. The task consists in reaching in the shortest time a
desired position with the robot’s end-effector, while avoiding
three ellipse-shaped obstacles, and minimizing the control
effort. The task is described by the following running cost:

l(x,u) = l1(x)+ l2(x)+ l3(x)+ l4(u), (6)

l1(x) = wd ||pee − pg||2 (7)

l2(x) =−
wp

α1
ln(e−α1

(√
(xee−xg)2+c2+

√
(yee−yg)2+c3+c4

)
+1)

(8)

l3(x) =
wob

α2

3

∑
i=1

ln(e
−α2

(
(xee−xob,i)

2

(ai/2)2
+

(yee−yob,i)
2

(bi/2)2
−1

)
+1) (9)

l4(u) = wu||uk||22 (10)

where l1 penalizes the distance between pee = (xee,yee) (the
x-y coordinates of the end-effector) and pg (the goal position
to be reached); l2 encodes a cost valley in the neighborhood
of the goal; l3 penalizes collision with the three obstacles
centered in pob,i = (xob,i,yob,i) with axes ai, and bi; l4

Fig. 2: Cost function without the control effort term (10),
considering a target at [−7,0] with weights wd = 100, wp =
5 · 105 and wob = 1 · 106. The green rectangle delimits the
Hard Region.

penalizes control efforts. The w’s are user-defined weights;
c2, c3, c4, α1, and α2 are the parameters of the softmax
functions. Fig. 2 depicts the cost function, neglecting the
control-effort term. The terminal cost is equal to the running
cost, except for l4.

The task is designed to ensure the presence of many local
minima. In particular, if the system starts from the hard
region, highlighted by a green rectangle in Fig. 2, it is hard
for the solver to find a globally-optimal solution.

The comparison between CACTO-SL and CACTO is con-
ducted with a 2D point mass considering a double integrator
dynamics. The analysed XY space is divided in a grid
with mesh size equal to 1 m. The points belonging to
the obstacles are considered unfeasible initial state and so
neglected. We compare the average cost of the trajectories
starting from feasible points, obtained by initializing the TO
solver with a rollout of CACTO-SL’s policy and CACTO’s
policy. Each test was repeated 10 times with different random
seeds, and so with a different initialization of the neural
networks. The same seeds are used for the two sets of tests
to minimize the effect of the network initialization. For the
training of CACTO’s neural networks, we employed the same
iperparameters used in [5] while for CACTO-SL we adopted
a new set of iperparameters based on the considerations
presented in II-C. In both cases, the training is stopped when
5×104 updates are performed.

The state vector is [x,y,vx,vy, t]∈R5 and the control vector
is [ax,ay] ∈R2, both bounded in [-2, 2] m/s2. The maximum
episode length is 10 s, while the target point is pg = (−7,0).
We used 50-step TD learning, and we set kS = 1 in the critic’s
loss function.

The analysis focuses on the hard region (x ∈ [0,15] m and
y ∈ [−5,5] m). For an easier interpretation of the results,
the initial velocity of the system is set to 0. The tests are
performed on a Workstation CELSIUS M770 equipped with

Fig. 3: Median (across runs) of the mean cost (across initial
conditions) starting from the hard region with zero initial
velocity.

Fig. 4: Median success rate (across runs) starting from the
hard region with zero initial velocity.

an INTEL XEON W2145 / Octa Core processor. Fig. 3 shows
the median (across different runs of each algorithm) of the
average cost (across different initial states), as a function of
the computation time. Fig. 4 reports instead the success rate,
defined as the percentage of times that the system is able to
reach the target without colliding with an obstacle. In both
figures the shaded areas represent the first and third quartiles,
while the data reported at time 0 corresponds to using TO
with the initial conditions as initial guess.

At convergence, both CACTO and CACTO-SL were able
to achieve good performance in terms of average cost and
success rate. However, for the same computation time, the
median performance of CACTO-SL was consistently better
than the median performance of CACTO. Also in terms of
consistency across different runs, measured by the first and
third quartiles, CACTO-SL outperformed CACTO, demon-
strating to be less sensitive to the initialization of the neural
networks.

Fig. 5 shows some trajectories obtained by warm-starting
TO with CACTO-SL’s rollouts, after 104 updates (corre-
sponding to ≈16 minutes of computation). All the reported

Fig. 5: Optimal trajectories obtained warm-starting TO with
CACTO-SL’s rollouts after 104 updates.

trajectories reach the target without colliding with the obsta-
cles after few updates.

It should be mentioned that the computation time for
each iteration is slightly increased in CACTO-SL due to
the computation of the network’s derivative and the DDP
backward pass. Overall, the computation time increase is
14%, i.e. it takes 72 min to perform 5 ·104 updates, instead
of 63 minutes. However, this extra computations seem to
be largely compensated for by the improved performance
and stability of the algorithm as it more efficiently exploits
each TO trajectory, and so it requires less TO episodes to
converge.

IV. CONCLUSIONS

We have presented an extension of the CACTO algorithm
that exploits the gradient of the Value function in the training
of the critic network. Our preliminary results show that
this helps the algorithm to converge faster to high-quality
solutions, while producing more consistent results across
runs using different random seeds.

In the future we plan to benchmark CACTO-SL on a
large number of problems to better evaluate its performance.
Moreover, we plan to explore different strategies to bias the
sampling of the initial states at the beginning of each episode,
so as to maximize the amount of information collected from
them.

REFERENCES

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[2] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[3] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[5] G. Grandesso, E. Alboni, G. P. R. Papini, P. M. Wensing, and
A. Del Prete, “Cacto: Continuous actor-critic with trajectory opti-
mization—towards global optimality,” IEEE Robotics and Automation
Letters, vol. 8, no. 6, pp. 3318–3325, 2023.

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization
of complex behaviors through online trajectory optimization,” in
Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference on, 2012, pp. 4906–4913. [Online]. Available:
https://dada.cs.washington.edu/homes/todorov/papers/MPCGetUp.pdf

[7] B. Nicholson, J. D. Siirola, J. P. Watson, V. M. Zavala,
and L. T. Biegler, “Pyomo.Dae: a Modeling and Automatic
Discretization Framework for Optimization With Differential and
Algebraic Equations,” Mathematical Programming Computation,
vol. 10, no. 2, pp. 187–223, 2018. [Online]. Available:
https://doi.org/10.1007/s12532-017-0127-0

[8] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[9] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[10] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

